Glossary

A

Addition Property of Equality

The addition property of equality states:
"If $a=b$, then $a+c=b+c$."

Example

If $x=2$, then $x+5=2+5$, or $x+5=7$ is an example of the Addition Property of Equality.

Addition Rule for Probability

The Addition Rule for Probability states: "The probability that Event A occurs or Event B occurs is the probability that Event A occurs plus the probability that Event B occurs minus the probability that both A and B occur."

$$
P(A \text { or } B)=P(A)+P(B)=P(A \text { and } B)
$$

Example

You flip a coin two times. Calculate the probability of flipping a heads on the first flip or flipping a heads on the second flip.
Let A represent the event of flipping a heads on the first flip. Let B represent the event of flipping a heads on the second flip.
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ or $B)=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}$
$P(A$ or $B)=\frac{3}{4}$
So, the probability of flipping a heads on the first flip or flipping a heads on the second flip is $\frac{3}{4}$.

adjacent angles

Adjacent angles are angles that share a common side and a common vertex, and lie on opposite sides of their common side.

Example

Angle $B A C$ and angle $C A D$ are adjacent angles. Angle FEG and angle GEH are adjacent angles.

adjacent arcs

Adjacent arcs are two arcs of the same circle sharing a common endpoint.

Example

Arcs $Z A$ and $A B$ are adjacent arcs.

adjacent side

The adjacent side of a triangle is the side adjacent to the reference angle that is not the hypotenuse.

Example

altitude

An altitude is a line segment drawn from a vertex of a triangle perpendicular to the line containing the opposite side.

Example

Segment $E G$ is an altitude of triangle $F E D$.

angle

An angle is a figure that is formed by two rays that extend from a common point called the vertex.

Example

Angles A and B are shown.

angle bisector

An angle bisector is a ray that divides an angle into two angles of equal measure.

Example

Ray $A T$ is the angle bisector of angle $M A H$.

angular velocity

Angular velocity is a type of circular velocity described as an amount of angle movement in radians over a specified amount of time. Angular velocity can be expressed as $\omega=\frac{\theta}{t}$, where $\omega=$ angular velocity, $\theta=$ angular measurement in radians, and $t=$ time .

annulus

An annulus is the region bounded by two concentric circles.

Example

The annulus is the shaded region shown.

arc

An arc is the curve between two points on a circle. An arc is named using its two endpoints.

Example

The symbol used to describe $\operatorname{arc} B C$ is $\overparen{B C}$.

arc length

An arc length is a portion of the circumference of a circle. The length of an arc of a circle can be calculated by multiplying the circumference of the circle by the ratio of the measure of the arc to 360°.

$$
\text { arc length }=2 \pi r \cdot \frac{x^{\circ}}{360^{\circ}}
$$

Example

In circle A, the radius $\overline{A B}$ is 3 centimeters and the measure of arc $B C$ is 83 degrees.
$(2 \pi r)\left(\frac{m \overparen{B C}}{360^{\circ}}\right)=2 \pi(3)\left(\frac{83^{\circ}}{360^{\circ}}\right)$

$$
\approx 4.35
$$

So, the length of $\operatorname{arc} B C$ is approximately 4.35 centimeters.

axis of symmetry

An axis of symmetry is a line that passes through a figure and divides the figure into two symmetrical parts that are mirror images of each other.

Example

Line k is the axis of symmetry of the parabola.

B

base angles of a trapezoid

The base angles of a trapezoid are either pair of angles that share a base as a common side.

Example

Angle T and angle R are one pair of base angles of trapezoid $P A R T$. Angle P and angle A are another pair of base angles.

biconditional statement

A biconditional statement is a statement written in the form "if and only if p, then q." It is a combination of both a conditional statement and the converse of that conditional statement. A biconditional statement is true only when the conditional statement and the converse of the statement are both true.

Example

Consider the property of an isosceles trapezoid: "The diagonals of an isosceles trapezoid are congruent." The property states that if a trapezoid is isosceles, then the diagonals are congruent. The converse of this statement is true: "If the diagonals of a trapezoid are congruent, then the trapezoid is an isosceles trapezoid." So, this property can be written as a biconditional statement: "A trapezoid is isosceles if and only if its diagonals are congruent."

binomial

Polynomials with exactly two terms are binomials.

Example

The polynomial $3 x+5$ is a binomial.

categorical data (qualitative data)

Categorical data are data that each fit into exactly one of several different groups, or categories. Categorical data are also called "qualitative data."

Example

Animals: lions, tigers, bears, etc.
U.S. Cities: Los Angeles, Atlanta, New York City, Dodge City, etc.

The set of animals and the set of U.S. cities are two examples of categorical data sets.

Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.
Cavalieri's principle
Cavalieri's principle states that if all one-dimensional
slices of two-dimensional figures have the same lengths,
then the two-dimensional figures have the same area.
The principle also states that given two solid figures
included between parallel planes, if every plane cross
section parallel to the given planes has the same area in
both solids, then the volumes of the solids are equal.

center of a circle

The center of a circle is a fixed point in the plane that is at an equal distance from every point on the circle.

Example

Point H is the center of the circle.

central angle

A central angle of a circle is an angle whose sides are radii. The measure of a central angle is equal to the measure of its intercepted arc.

Example

In circle $O, \angle A O C$ is a central angle and $\overparen{A C}$ is its intercepted arc. If $m \angle A O C=45^{\circ}$, then $m \overparen{A C}=45^{\circ}$.

centroid

The centroid of a triangle is the point at which the medians of the triangle intersect.

Example

Point X is the centroid of triangle $A B C$.

chord

A chord is a line segment whose endpoints are points on a circle. A chord is formed by the intersection of the circle and a secant line.

Example

Segment $C D$ is a chord of circle O.

circular permutation

A circular permutation is a permutation in which there is no starting point and no ending point. The circular permutation of n objects is $(n-1)$!.

Example

A club consists of four officers: a president (P), a vicepresident (VP), a secretary (S), and a treasurer (T). There are (4-1)!, or 6 ways for the officers to sit around a round table.

circumcenter

The circumcenter of a triangle is the point at which the perpendicular bisectors intersect.

Example

Point X is the circumcenter of triangle $A B C$.

circumscribed polygon

A circumscribed polygon is a polygon drawn outside a circle such that each side of the polygon is tangent to the circle.

Example

Triangle $A B C$ is a circumscribed triangle.

closed (closure)

When an operation is performed on any of the numbers in a set and the result is a number that is also in the same set, the set is said to be closed (or to have closure) under that operation.

Example

The set of whole numbers is closed under addition. The sum of any two whole numbers is always another whole number.

closed interval

A closed interval $[a, b]$ describes the set of all numbers between a and b, including a and b.

Example

The interval $[3,7]$ is the set of all numbers greater than or equal to 3 and less than or equal to 7 .

coefficient

Within a polynomial, a coefficient is a number multiplied by a power.

Example

The term $3 x^{5}$ has a coefficient of 3 .

coefficient of determination

The coefficient of determination measures the "strength" of the relationship between the original data and its quadratic regression equation.

collinear points

Collinear points are points that are located on the same line.

Example

Points A, B, and C are collinear.

combination

A combination is an unordered collection of items. One notation for the combinations of r elements taken from a collection of n elements is:

$$
{ }_{n} C_{r}=C(n, r)=C_{r}^{n}
$$

Example

The two-letter combinations of the letters A, B, and C are: $A B, A C, B C$.

compass

A compass is a tool used to create arcs and circles.

Example

complement of an event

The complement of an event is an event that contains all the outcomes in the sample space that are not outcomes in the event. In mathematical notation, if E is an event, then the complement of E is often denoted as \bar{E} or E^{c}.

Example

A number cube contains the numbers 1 though 6 . Let E represent the event of rolling an even number. The complement of Event E is rolling an odd number.

complementary angles

Two angles are complementary if the sum of their measures is 90°.

Example

Angle 1 and angle 2 are complementary angles. $m \angle 1+m \angle 2=90^{\circ}$

completing the square

Completing the square is a process for writing a quadratic expression in vertex form which then allows you to solve for the zeros.

complex conjugates

Complex conjugates are pairs of numbers of the form $a+b i$ and $a-b i$. The product of a pair of complex conjugates is always a real number.

Example

The expressions $(1+i)$ and $(1-i)$ are complex conjugates. The product of $(1+i)$ and $(1-i)$ is a real number: $(1+i)(1-i)=1-i^{2}=1-(-1)=2$.

complex numbers

The set of complex numbers is the set of all numbers written in the form $a+b i$, where a and b are real numbers.

composition of functions

A composition of functions is the combination of functions such that the output from one function becomes the input for the next function.

Example

The composition of function $f(x)$ composed with $g(x)$ is denoted $(f \circ g)(x)$ or $f(g(x))$. It is read as " f composed with $g(x)$ " or " f of $g(x)$."

compound event

A compound event combines two or more events, using the word "and" or the word "or."

Example

You roll a number cube twice. Rolling a six on the first roll and rolling an odd number on the second roll are compound events.

concavity

The concavity of a parabola describes the orientation of the curvature of the parabola.

Example

concentric circles

Concentric circles are circles in the same plane that have a common center.

Example

The circles shown are concentric because they are in the same plane and have a common center H.

conclusion

Conditional statements are made up of two parts. The conclusion is the result that follows from the given information.

Example

In the conditional statement "If two positive numbers are added, then the sum is positive," the conclusion is "the sum is positive."

concurrent

Concurrent lines, rays, or line segments are three or more lines, rays, or line segments intersecting at a single point.

Example

Lines ℓ, m, and n are concurrent lines.

conditional probability

A conditional probability is the probability of event B, given that event A has already occurred. The notation for conditional probability is $P(B \mid A)$, which reads, "the probability of event B, given event A."

Example

The probability of rolling a 4 or less on the second roll of a number cube, given that a 5 is rolled first, is an example of a conditional probability.

conditional statement

A conditional statement is a statement that can be written in the form "If p, then q."

Example

The statement "If I close my eyes, then I will fall asleep" is a conditional statement.

congruent line segments

Congruent line segments are two or more line segments that have equal measures.

Example

Line segment $A B$ is congruent to line segment $C D$.

conjecture

A conjecture is a hypothesis that something is true. The hypothesis can later be proved or disproved.

construct

A constructed geometric figure is created using only a compass and a straightedge.

construction proof

A construction proof is a proof that results from creating a figure with specific properties using only a compass and straightedge.

Example

A construction proof is shown of the conditional statement: If $\overline{A B} \cong \overline{C D}$, then $\overline{A C} \cong \overline{B D}$.

contrapositive

To state the contrapositive of a conditional statement, negate both the hypothesis and the conclusion and then interchange them.

Conditional Statement: If p, then q.
Contrapositive: If not q, then not p.

Example

Conditional Statement: If a triangle is equilateral, then it is isosceles.
Contrapositive: If a triangle is not isosceles, then it is not equilateral.

converse

To state the converse of a conditional statement, interchange the hypothesis and the conclusion.

Conditional Statement: If p, then q.
Converse: If q, then p.

Example

Conditional Statement: If $a=0$ or $b=0$, then $a b=0$.
Converse: If $a b=0$, then $a=0$ or $b=0$.

Converse of Multiplication Property of Zero

The Converse of Multiplication Property of Zero states that if the product of two or more factors is equal to zero, then at least one factor must be equal to zero. This is also called the Zero Product Property.

Example

If $(x-2)(x+3)=0$, then $x-2=0$ or $x+3=0$.

coplanar lines

Coplanar lines are lines that lie in the same plane.

Example

Line A and line B are coplanar lines. Line C and line D are not coplanar lines.

corresponding parts of congruent triangles are congruent (CPCTC)

CPCTC states that if two triangles are congruent, then each part of one triangle is congruent to the corresponding part of the other triangle.

Example

In the triangles shown, $\triangle X Y Z \cong \triangle L M N$. Because corresponding parts of congruent triangles are congruent (CPCTC), the following corresponding parts are congruent.

- $\angle X \cong \angle L$
- $\angle Y \cong \angle M$
- $\angle Z \cong \angle N$
- $\overline{X Y} \cong \overline{L M}$
- $\overline{Y Z} \cong \overline{M N}$
- $\overline{X Z} \cong \overline{L N}$

cosecant (csc)

The cosecant (csc) of an acute angle in a right triangle is the ratio of the length of the hypotenuse to the length of the side opposite the angle.

Example

In triangle $A B C$, the cosecant of angle A is:
$\csc A=\frac{\text { length of hypotenuse }}{\text { length of side opposite } \angle A}=\frac{A B}{B C}$
The expression "csc A " means "the cosecant of angle A."

cosine (cos)

The cosine (cos) of an acute angle in a right triangle is the ratio of the length of the side adjacent to the angle to the length of the hypotenuse.

Example

In triangle $A B C$, the cosine of angle A is:
$\cos A=\frac{\text { length of side adjacent to } \angle A}{\text { length of hypotenuse }}=\frac{A C}{A B}$
The expression "cos A " means "the cosine of angle A."

cotangent (cot)

The cotangent (cot) of an acute angle in a right triangle is the ratio of the length of the side adjacent to the angle to the length of the side opposite the angle.

Example

In triangle $A B C$, the cotangent of angle A is:
$\cot A=\frac{\text { length of side adjacent to } \angle A}{\text { length of side opposite } \angle A}=\frac{A C}{B C}$
The expression "cot A " means "the cotangent of angle A."

counterexample

A counterexample is a single example that shows that a statement is not true.

Example

Your friend claims that you add fractions by adding the numerators and then adding the denominators. A counterexample is $\frac{1}{2}+\frac{1}{2}$. The sum of these two fractions is 1. Your friend's method results in $\frac{1+1}{2+2}$, or $\frac{1}{2}$. Your friend's method is incorrect.

Counting Principle

The Counting Principle states that if action A can occur in m ways and for each of these m ways action B can occur in n ways, then actions A and B can occur in $m \cdot n$ ways.

Example

In the school cafeteria, there are 3 different main entrées and 4 different sides. So, there are $3 \cdot 4$, or 12 different lunches that can be created.

D

deduction

Deduction is reasoning that involves using a general rule to make a conclusion.

Example

Sandy learned the rule that the sum of the measures of the three interior angles of a triangle is 180 degrees. When presented with a triangle, she concludes that the sum of the measures of the three interior angles is 180 degrees. Sandy reached the conclusion using deduction.

degree measure of an arc

The degree measure of a minor arc is equal to the degree measure of its central angle. The degree measure of a major arc is determined by subtracting the degree measure of the minor arc from 360°.

Example

The measure of minor arc $A B$ is 30°. The measure of major arc $B Z A$ is $360^{\circ}-30^{\circ}=330^{\circ}$.

degree of a polynomial

The greatest exponent in a polynomial determines the degree of the polynomial.

Example

The polynomial $2 x^{3}+5 x^{2}-6 x+1$ has a degree of 3 .

degree of a term

The degree of a term in a polynomial is the exponent of the term.

Example

In the polynomial $5 x^{2}-6 x+9$, the degree of the term $6 x$ is 1 .

dependent events

Dependent events are events for which the occurrence of one event has an impact on the occurrence of subsequent events.

Example

A jar contains 1 blue marble, 1 green marble, and 2 yellow marbles. You randomly choose a yellow marble without replacing the marble in the jar, and then randomly choose a yellow marble again. The events of randomly choosing a yellow marble first and randomly choosing a yellow marble second are dependent events because the 1st yellow marble was not replaced in the jar.

diameter

The diameter of a circle is a line segment with each endpoint on the circle that passes through the center of the circle.

Example

In circle $O, \overline{A B}$ is a diameter.

diameter of a sphere

The diameter of a sphere is a line segment with each endpoint on the sphere that passes through the center of the sphere.

Example

difference of two cubes

The difference of two cubes is an expression in the form $a^{3}-b^{3}$ that can be factored as $(a-b)\left(a^{2}+a b+b^{2}\right)$.

Example

The expression $x^{3}-8$ is a difference of two cubes because it can be written in the form $x^{3}-2^{3}$. The expression can be factored as $(x-2)\left(x^{2}+2 x+4\right)$.

difference of two squares

The difference of two squares is an expression in the form $a^{2}-b^{2}$ that can be factored as $(a+b)(a-b)$.

Example

The expression $x^{2}-4$ is a difference of two squares because it can be written in the form $x^{2}-2^{2}$. The expression can be factored as $(x+2)(x-2)$.

dilation factor

The dilation factor is the common factor which every y-coordinate of a graph is multiplied by to produce a vertical dilation.

direct proof

A direct proof begins with the given information and works to the desired conclusion directly through the use of givens, definitions, properties, postulates, and theorems.

directrix of a parabola

The directrix of a parabola is a line such that all points on the parabola are equidistant from the focus and the directrix.

Example

The focus of the parabola shown is the point $(0,2)$. The directrix of the parabola shown is the line $y=-2$. All points on the parabola are equidistant from the focus and the directrix.

disc

A disc is the set of all points on a circle and in the interior of a circle.

discriminant

The discriminant is the radicand expression in the Quadratic Formula which "discriminates" the number of roots of a quadratic equation.

Example

The discriminant in the Quadratic Formula is the expression $b^{2}-4 a c$.

disjoint sets

Two or more sets are disjoint sets if they do not have any common elements.

Example

Let N represent the set of 9 th grade students. Let T represent the set of 10th grade students. The sets N and T are disjoint sets because the two sets do not have any common elements. Any student can be in one grade only.

Distance Formula

The Distance Formula can be used to calculate the distance between two points.
The distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Example

To calculate the distance between the points ($-1,4$) and $(2,-5)$, substitute the coordinates into the Distance Formula.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(2+1)^{2}+(-5-4)^{2}}$
$d=\sqrt{3^{2}+(-9)^{2}}$
$d=\sqrt{9+81}$
$d=\sqrt{90}$
$d \approx 9.49$
So, the distance between the points $(-1,4)$ and
$(2,-5)$ is approximately 9.49 units.

draw

To draw is to create a geometric figure using tools such as a ruler, straightedge, compass, or protractor. A drawing is more accurate than a sketch.

E

element

A member of a set is called an element of that set.

Example

Set B contains the elements a, b, and c.
$B=\{a, b, c\}$

endpoint of a ray

An endpoint of a ray is a point at which a ray begins.

Example

Point C is the endpoint of ray $C D$.

endpoints of a line segment

An endpoint of a line segment is a point at which a segment begins or ends.

Examples

Points A and B are endpoints of segment $A B$.

Euclidean geometry

Euclidean geometry is a complete system of geometry developed from the work of the Greek mathematician Euclid. He used a small number of undefined terms and postulates to systematically prove many theorems.
Euclid's first five postulates are:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
5. If two lines are drawn that intersect a third line in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. (This postulate is equivalent to what is known as the parallel postulate.)

Example

Euclidean geometry

event

An event is an outcome or a set of outcomes in a sample space.

Example

A number cube contains the numbers 1 through 6. Rolling a 6 is one event. Rolling an even number is another event.

expected value

The expected value is the average value when the number of trials in a probability experiment is large.

experimental probability

Experimental probability is the ratio of the number of times an event occurs to the total number of trials performed.

Example

You flip a coin 100 times. Heads comes up 53 times. The experimental probability of getting heads is $\frac{53}{100}$.

exponentiation

Exponentiation means to raise a quantity to a power.

exterior angle of a polygon

An exterior angle of a polygon is an angle that is adjacent to an interior angle of a polygon.

Examples

Angle $J H I$ is an exterior angle of quadrilateral $F G H I$. Angle $E D A$ is an exterior angle of quadrilateral $A B C D$.

external secant segment

An external secant segment is the portion of each secant segment that lies outside of the circle. It begins at the point at which the two secants intersect and ends at the point where the secant enters the circle.

Example

Segment $H C$ and segment $P C$ are external secant segments.

extract the square root

To extract a square root, solve an equation of the form $a^{2}=b$ for a.

Example

To extract the square root for the equation $x^{2}=9$, solve for x.
$x^{2}=9$
$x= \pm \sqrt{9}$
$x= \pm 3$

F

factor an expression

To factor an expression means to use the Distributive Property in reverse to rewrite the expression as a product of factors.

Example

The expression $2 x+4$ can be factored as $2(x+2)$.

factored form

A quadratic function written in factored form is in the form $f(x)=a(x-r 1)\left(x-r_{2}\right)$, where $a \neq 0$.

Example

The function $h(x)=x^{2}-8 x+12$ written in factored form is $(x-6)(x-2)$.

factorial

The factorial of n, written as $n!$, is the product of all non-negative integers less than or equal to n.

Example

$3!=3 \times 2 \times 1=6$

flow chart proof

A flow chart proof is a proof in which the steps and corresponding reasons are written in boxes. Arrows connect the boxes and indicate how each step and reason is generated from one or more other steps and reasons.

Example

A flow chart proof is shown for the conditional statement: If $\overline{A B} \cong \overline{C D}$, then $\overline{A C} \cong \overline{B D}$.
Given: $\overline{A B} \cong \overline{C D}$
Prove: $\overline{A C} \cong \overline{B D}$

focus of a parabola

The focus of a parabola is a point such that all points on the parabola are equidistant from the focus and the directrix.

Example

The focus of the parabola shown is the point $(0,2)$. The directrix of the parabola shown is the line $y=-2$. All points on the parabola are equidistant from the focus and the directrix.

frequency table

A frequency table shows the frequency of an item, number, or event appearing in a sample space.

Example

The frequency table shows the number of times a sum of two number cubes occurred.

Sum of Two Number Cubes	Frequency
2	1
3	2
4	3
5	4
6	5
7	6
8	5
9	4
10	3
11	2
12	1

G

general form of a parabola

The general form of a parabola centered at the origin is an equation of the form $A x^{2}+D y=0$ or $B y^{2}+C x=0$.

Example

The equation for the parabola shown can be written in general form as $x^{2}-2 y=0$.

geometric mean

The geometric mean of two positive numbers a and b is the positive number x such that $\frac{a}{x}=\frac{x}{b}$.

Example

The geometric mean of 3 and 12 is 6 .
$\frac{3}{x}=\frac{x}{12}$
$x^{2}=36$
$x=6$

geometric probability

Geometric probability is probability that involves a geometric measure, such as length, area, volume, and so on.

Example

A dartboard has the size and shape shown. The gray shaded area represents a scoring section of the dartboard. Calculate the probability that a dart that lands on a random part of the target will land in a gray scoring section.

Calculate the area of the dartboard: $20(20)=400$ in. 2
There are 4 gray scoring squares with 8 -in. sides and a gray scoring square with $20-8-8=4$-in. sides. Calculate the area of the gray scoring sections: $4(8)(8)+4(4)=272$ in. 2
Calculate the probability that a dart will hit a gray scoring section: $\frac{272}{400}=0.68=68 \%$.

great circle of a sphere

The great circle of a sphere is a cross section of a sphere when a plane passes through the center of the sphere.

Example

greatest integer function
 (floor function)

The greatest integer function, also known as a floor function, is defined as the greatest integer less than or equal to x.

Example

The greatest integer function is defined as $G(x)=\lfloor x \mid$. If $x=3.75$ then $G(x)=3$.

H

half-closed (half-open) interval

A half-closed or half-open interval $(a, b]$ describes the set of all numbers between a and b, including b but not including a. The half-closed interval $[a, b)$ describes the set of all numbers between a and b, including a but not including b.

Example

The interval $(3,7]$ is the set of all numbers greater than 3 and less than or equal to 7 .
The interval $[3,7)$ is the set of all numbers greater than or equal to 3 and less than 7 .

hemisphere

A hemisphere is half of a sphere bounded by a great circle.

Example

A hemisphere is shown.

hypothesis

A hypothesis is the "if" part of an "if-then" statement.

Example

In the statement, "If the last digit of a number is a 5, then the number is divisible by 5 ," the hypothesis is "If the last digit of a number is a 5 ."

I

image

An image is a new figure formed by a transformation.

Example

The figure on the right is the image that has been created by translating the original figure 3 units to the right horizontally.

the imaginary number i

The number i is a number such that $i^{2}=-1$.

imaginary numbers

The set of imaginary numbers is the set of all numbers written in the form $a+b i$, where a and b are real numbers and b is not equal to 0 .

imaginary part of a complex number

In a complex number of the form $a+b i$, the term $b i$ is called the imaginary part of a complex number.

Example

The imaginary part of the complex number $3+2 i$ is $2 i$.

imaginary roots/imaginary zeros

Imaginary roots are imaginary solutions to equations.

Example

The quadratic equation $x^{2}-2 x+2$ has two imaginary roots: $1+i$ and $1-i$.

incenter

The incenter of a triangle is the point at which the angle bisectors of the triangle intersect.

Example

Point X is the incenter of triangle $A B C$.

included angle

An included angle is an angle formed by two consecutive sides of a figure.

Example

In triangle $A B C$, angle A is the included angle formed by consecutive sides $\overline{A B}$ and $\overline{A C}$.

included side

An included side is a line segment between two consecutive angles of a figure.

Example

In triangle $A B C, \overline{A B}$ is the included side formed by consecutive angles A and B.

independent events

Independent events are events for which the occurrence of one event has no impact on the occurrence of the other event.

Example

You randomly choose a yellow marble, replace the marble in the jar, and then randomly choose a yellow marble again. The events of randomly choosing a yellow marble first and randomly choosing a yellow marble second are independent events because the 1st yellow marble was replaced in the jar.

indirect measurement

Indirect measurement is a technique that uses proportions to determine a measurement when direct measurement is not possible.

Example

You can use a proportion to solve for the height x of the flagpole.

$$
\begin{aligned}
\frac{x}{5.5} & =\frac{19+11}{11} \\
\frac{x}{5.5} & =\frac{30}{11} \\
11 x & =165 \\
x & =15
\end{aligned}
$$

The flagpole is 15 feet tall.

indirect proof or proof by contradiction

An indirect proof, or proof by contradiction, uses the contrapositive. By proving that the contrapositive is true, you prove that the statement is true.

Example

Given: Triangle $D E F$
Prove: A triangle cannot have more than one obtuse angle.
Given $\triangle D E F$, assume that $\triangle D E F$ has two obtuse angles. So, assume $m \angle D=91^{\circ}$ and $m \angle E=91^{\circ}$. By the Triangle Sum Theorem, $m \angle D+m \angle E+m \angle F=$ 180°. By substitution, $91^{\circ}+91^{\circ}+m \angle F=180^{\circ}$, and by subtraction, $m \angle F=-2^{\circ}$. But, it is not possible for a triangle to have a negative angle, so this is a contradiction. This proves that a triangle cannot have more than one obtuse angle.

induction

induction is reasoning that involves using specific examples to make a conclusion.

Example

Sandy draws several triangles, measures the interior angles, and calculates the sum of the measures of the three interior angles. She concludes that the sum of the measures of the three interior angles of a triangle is 180°. Sandy reached the conclusion using induction.

inscribed angle

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.

Example

Angle $B A C$ is an inscribed angle. The vertex of angle $B A C$ is on the circle and the sides of angle BAC contain the chords $\overline{A B}$ and $\overline{A C}$.

inscribed polygon

An inscribed polygon is a polygon drawn inside a circle such that each vertex of the polygon is on the circle.

Example

Quadrilateral $K L M N$ is inscribed in circle J.

integers

The set of integers consists of the set of whole numbers and their opposites.

Example

The numbers $-12,0$, and 30 are integers.

intercepted arc

An intercepted arc is formed by the intersections of the sides of an inscribed angle with a circle.

Example

$\overline{P R}$ is an intercepted arc of inscribed angle $P S R$.

interior angle of a polygon

An interior angle of a polygon is an angle which is formed by consecutive sides of the polygon or shape.

Example

The interior angles of $\triangle A B C$ are $\angle A B C, \angle B C A$, and $\angle C A B$.

intersecting sets

Two or more sets are intersecting sets if they have common elements.

Example

Let V represent the set of students who are on the girls' volleyball team. Let M represent the set of students who are in the math club. Julia is on the volleyball team and belongs to the math club. The sets V and M are intersecting sets because the two sets have at least one common element, Julia.

interval

An interval is defined as the set of real numbers between two given numbers.

Example

The interval $(3,7)$ is the set of all numbers between 3 and 7 , not including 3 or 7 .

inverse

To state the inverse of a conditional statement, negate both the hypothesis and the conclusion.

Conditional Statement: If p, then q. Inverse: If not p, then not q.

Example

Conditional Statement: If a triangle is equilateral, then it is isosceles.
Inverse: If a triangle is not equilateral, then it is not isosceles.

inverse cosine

The inverse cosine, or arc cosine, of x is the measure of an acute angle whose cosine is x.

Example

In right triangle $A B C$, if $\cos A=x$, then $\cos ^{-1} x=m \angle A$.

inverse function

An inverse function takes the output value, performs some operation(s) on this value, and arrives back at the original function's input value.

Example

The inverse of the function $y=2 x$ is the function $x=2 y$, or $y=\frac{x}{2}$.

inverse operation

"Undoing," working backward, or retracing steps to return to an original value or position is referred to as using the inverse operation.

Example

The operations of addition and subtraction are inverse operations.

inverse sine

The inverse sine, or arc sine, of x is the measure of an acute angle whose sine is x.

Example

In right triangle $A B C$, if $\sin A=x$, then $\sin ^{-1} x=m \angle A$.

inverse tangent

The inverse tangent (or arc tangent) of x is the measure of an acute angle whose tangent is x.

Example

In right triangle $A B C$, if $\tan A=x$, then $\tan ^{-1} x=m \angle A$.

irrational numbers

The set of irrational numbers consists of all numbers that cannot be written as $\frac{a}{b}$ where a and b are integers.

Example

The number π is an irrational number.

isometric paper

Isometric paper is often used by artists and engineers to create three-dimensional views of objects in two dimensions.

Example

The rectangular prism is shown on isometric paper.

isosceles trapezoid

An isosceles trapezoid is a trapezoid whose nonparallel sides are congruent.

Example

In trapezoid $J K L M$, side $\overline{K L}$ is parallel to side $\overline{J M}$, and the length of side $\overline{J K}$ is equal to the length of side $\overline{L M}$, so trapezoid JKLM is an isosceles trapezoid.

I

Law of Cosines

The Law of Cosines, or

$$
\begin{aligned}
& a^{2}=c^{2}+b^{2}-2 b c \cdot \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cdot \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C
\end{aligned}
$$

can be used to determine the unknown lengths of sides or the unknown measures of angles in any triangle.

Example

In triangle $A B C$, the measure of angle A is 65°, the length of side b is 4.4301 feet, and the length of side c is 7.6063 feet. Use the Law of Cosines to calculate the length of side a.
$a^{2}=4.4301^{2}+7.6063^{2}-2(4.4301)(7.6063) \cos 65^{\circ}$
The length of side a is 7 feet.

Law of Sines

The Law of Sines, or $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$, can be used to determine the unknown side lengths or the unknown angle measures in any triangle.

Example

In triangle $A B C$, the measure of angle A is 65°, the measure of angle B is 80°, and the length of side a is 7 feet. Use the Law of Sines to calculate the length of side b.
$\frac{7}{\sin 65^{\circ}}=\frac{b}{\sin 80^{\circ}}$
The length of side b is 7.6063 feet.

leading coefficient

The leading coefficient of a function is the numerical coefficient of the term with the greatest power.

Example

In the function $h(x)=-7 x^{2}+x+25$, the value -7 is the leading coefficient.

least integer function (ceiling function)

The least integer function, also known as the ceiling function, is defined as the least integer greater than or equal to x.

Example

The least integer function is defined as $L(x)=\lceil x\rceil$. If $x=3.75$ then $L(x)=4$.

line

A line is made up of an infinite number of points that extend infinitely in two opposite directions. A line is straight and has only one dimension.

Example

The line below can be called line k or line $A B$.

line segment

A line segment is a portion of a line that includes two points and all of the collinear points between the two points.

Example

The line segment shown is named $\overline{A B}$ or $\overline{B A}$.

linear pair

A linear pair of angles are two adjacent angles that have noncommon sides that form a line.

Example

The diagram shown has four pairs of angles that form a linear pair.

- Angles 1 and 2 form a linear pair.
- Angles 2 and 3 form a linear pair.
- Angles 3 and 4 form a linear pair.
- Angles 4 and 1 form a linear pair.

linear velocity

Linear velocity is a type of circular velocity described as an amount of distance over a specified amount of time. Linear velocity can be expressed as $v=\frac{s}{t}$, where $v=$ velocity, $s=\operatorname{arc}$ length, and $t=$ time.

locus of points

A locus of points is a set of points that satisfy one or more conditions.

Example

A circle is defined as a locus of points that are a fixed distance, called the radius, from a given point, called the center.

M

major arc

Two points on a circle determine a major arc and a minor arc. The arc with the greater measure is the major arc. The other arc is the minor arc.

Example

Circle Q is divided by points A and B into two arcs, $\operatorname{arc} A C B$ and $\operatorname{arc} A B$. Arc $A C B$ has the greater measure, so it is the major arc. Arc $A B$ has the lesser measure, so it is the minor arc.

median

The median of a triangle is a line segment drawn from a vertex to the midpoint of the opposite side.

Example

The 3 medians are drawn on the triangle shown.

midpoint

The midpoint of a line segment is the point that divides the line segment into two congruent segments.

Example

Because point B is the midpoint of $\overline{A C}, \overline{A B} \cong \overline{B C}$.

Midpoint Formula

The Midpoint Formula can be used to calculate the midpoint between two points. The midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Example

To calculate the midpoint between the points ($-1,4$) and $(2,-5)$, substitute the coordinates into the Midpoint Formula.

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{-1+2}{2}, \frac{4-5}{2}\right) \\
& =\left(\frac{1}{2}, \frac{-1}{2}\right)
\end{aligned}
$$

So, the midpoint between the points $(-1,4)$ and $(2,-5)$ is $\left(\frac{1}{2},-\frac{1}{2}\right)$.

midsegment of a trapezoid

The midsegment of a trapezoid is a line segment formed by connecting the midpoints of the legs of the trapezoid.

Example

Segment $X Y$ is the midsegment of trapezoid $A B C D$.

midsegment of a triangle

A midsegment of a triangle is a line segment formed by connecting the midpoints of two sides of a triangle.

Example

Segment $A B$ is a midsegment.

minor arc

Two points on a circle determine a minor arc and a major arc. The arc with the lesser measure is the minor arc. The other arc is the major arc.

Example

Circle Q is divided by points A and B into two arcs, $\operatorname{arc} A C B$ and arc $A B$. Arc $A B$ has the lesser measure, so it is the minor arc. Arc $A C B$ has the greater measure, so it is the major arc.

monomial

Polynomials with only one term are monomials.

Example

The expressions $5 x, 7,-2 x y$, and $13 x^{3}$ are monomials.

N

natural numbers

The set of natural numbers consists of the numbers that you use to count objects.

Example

The numbers 1, 2, 3, 4, \ldots are natural numbers.

negative square root

A square root that is negative.

Example

The negative square root of 9 is -3 .

non-uniform probability model

When all probabilities in a probability model are not equivalent to each other, it is called a non-uniform probability model.

Example

Spinning the spinner shown represents a non-uniform probability model because the probability of landing on a shaded space is not equal to the probability of landing on a non-shaded space.

0

oblique cylinder

When a circle is translated through space in a direction that is not perpendicular to the plane containing the circle, the solid formed is an oblique cylinder.

Example

The prism shown is an oblique cylinder.

oblique rectangular prism

When a rectangle is translated through space in a direction that is not perpendicular to the plane containing the rectangle, the solid formed is an oblique rectangular prism.

Example

The prism shown is an oblique rectangular prism.

oblique triangular prism

When a triangle is translated through space in a direction that is not perpendicular to the plane containing the triangle, the solid formed is an oblique triangular prism.

Example

The prism shown is an oblique triangular prism.

one-to-one function

A function is a one-to-one function if both the function and its inverse are functions.

Example

The equation $y=x^{3}$ is a one-to-one function because its inverse, $\sqrt[3]{x}=y$, is a function. The equation $y=x^{2}$ is not a one-to-one function because its inverse, $\pm \sqrt{\mathrm{X}}=y$, is not a function.

open interval

An open interval (a, b) describes the set of all numbers between a and b, but not including a or b.

Example

The interval $(3,7)$ is the set of all numbers greater than 3 and less than 7.

opposite side

The opposite side of a triangle is the side opposite the reference angle.

Example

organized list

An organized list is a visual model for determining the sample space of events.

Example

The sample space for flipping a coin 3 times can be represented as an organized list.

HHH	THH
HHT	THT
HTH	TTH
HTT	TTT

orthocenter

The orthocenter of a triangle is the point at which the altitudes of the triangle intersect.

Example

Point X is the orthocenter of triangle $A B C$.

outcome

An outcome is the result of a single trial of an experiment.

Example

Flipping a coin has two outcomes: heads or tails.

P

parabola

The shape that a quadratic function forms when graphed is called a parabola. A parabola is the set of all points in a plane that are equidistant from a fixed point called the focus and a fixed line called the directrix.

Example

The focus of the parabola shown is the point $(0,2)$. The directrix of the parabola shown is the line $y=-2$. All points on the parabola are equidistant from the focus and the directrix.

paragraph proof

A paragraph proof is a proof that is written in paragraph form. Each sentence includes mathematical statements that are organized in logical steps with reasons.

Example

The proof shown is a paragraph proof that vertical angles 1 and 3 are congruent.
Angle 1 and angle 3 are vertical angles. By the definition of linear pair, angle 1 and angle 2 form a linear pair. Angle 2 and angle 3 also form a linear pair. By the Linear Pair Postulate, angle 1 and angle 2 are supplementary. Angle 2 and angle 3 are also supplementary. Angle 1 is congruent to angle 3 by the Congruent Supplements Theorem.

perfect square trinomial

A perfect square trinomial is an expression in the form $a^{2}+2 a b+b^{2}$ or in the form $a^{2}-2 a b+b^{2}$.

Example

The trinomial $x^{2}+6 x+9$ is a perfect square trinomial because it can be written as $x^{2}+2(3) x+3^{2}$.

permutation

A permutation is an ordered arrangement of items without repetition.

Example

The permutations of the letters A, B, and C are:

$A B C$	$A C B$
$B A C$	$B C A$
$C A B$	$C B A$

perpendicular bisector

A perpendicular bisector is a line, line segment, or ray that intersects the midpoint of a line segment at a 90-degree angle.

Example

Line k is the perpendicular bisector of $\overline{A B}$. It is perpendicular to $\overline{A B}$, and intersects $\overline{A B}$ at midpoint M so that $A M=M B$.

plane

A plane is a flat surface with infinite length and width, but no depth. A plane extends infinitely in all directions.

Example

Plane A is shown.

point

A point has no dimension, but can be visualized as a specific position in space, and is usually represented by a small dot.

Example

point A is shown.

${ }^{\bullet}{ }_{A}$

point of concurrency

A point of concurrency is the point at which three or more lines intersect.

Example

Point X is the point of concurrency for lines ℓ, m, and n.

point of tangency

A tangent to a circle is a line that intersects the circle at exactly one point, called the point of tangency.

Example

Line $R Q$ is tangent to circle P. Point Q is the point of tangency.

point-slope form

The point-slope form of a linear equation that passes through the point $\left(x_{1}, y_{1}\right)$ and has slope m is $y-y_{1}=m\left(x-x_{1}\right)$.

Example

A line passing through the point $(1,2)$ with a slope of $\frac{1}{2}$ can be written in point-slope form as
$y-2=\frac{1}{2}(x+1)$.

polynomial

A polynomial is a mathematical expression involving the sum of powers in one or more variables multiplied by coefficients.

Example

The expression $3 x^{3}+5 x-6 x+1$ is a polynomial.

positive square root

A square root that is positive.

Example

The positive square root of 9 is 3 .

postulate

A postulate is a statement that is accepted to be true without proof.

Example

The following statement is a postulate: A straight line may be drawn between any two points.

pre-image

A pre-image is the figure that is being transformed.

Example

The figure on the right is the image that has been formed by translating the pre-image 3 units to the right horizontally.

principal square root

A positive square root of a number.

Example

The principal square root of 9 is 3 .

principal square root of a negative number

For any positive real number n, the principal square root of a negative number, $-n$, is defined by $\sqrt{-n}=i \sqrt{n}$.

Example

The principal square root of -5 is $\sqrt{-5}=i \sqrt{5}$.

probability

The probability of an event is the ratio of the number of desired outcomes to the total number of possible outcomes, $P(A)=\frac{\text { desired outcomes }}{\text { possible outcomes }}$.

Example

When flipping a coin, there are 2 possible outcomes: heads or tails. The probability of flipping a heads is $\frac{1}{2}$.

probability model

A probability model lists the possible outcomes and the probability for each outcome. In a probability model, the sum of the probabilities must equal 1.

Example

The table shows a probability model for flipping a fair coin once.

Outcomes	Heads (H)	Tails (T)
Probability	$\frac{1}{2}$	$\frac{1}{2}$

propositional form

When a conditional statement is written using the propositional variables p and q, the statement is said to be written in propositional form.

Example

Propositional form:
"If p, then q."
$p \rightarrow q$

propositional variables

When a conditional statement is written in propositional form as "If p, then q," the variables p and q are called propositional variables.

pure imaginary number

A pure imaginary number is a number of the form bi, where b is not equal to 0 .

Example

The imaginary numbers $24 i$ and $15 i$ are pure imaginary numbers.

Q

Quadratic Formula

The Quadratic Formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

quadratic regression

A quadratic regression is a mathematical method to determine the equation of a "parabola of best fit" for a data set.

Example

The graph of the quadratic regression for these data is shown.

R

radian

One radian is defined as the measure of a central angle whose arc length is the same as the radius of the circle.

radical expression

A radical expression is an expression that involves a radical symbol $(\sqrt{ })$.

radicand

The value that is inside a radical is called the radicand.

Example

In the radical expression $\sqrt{25}$, the number 25 is the radicand.

radius

The radius of a circle is a line segment with one endpoint on the circle and one endpoint at the center.

Example

In circle $O, \overline{O A}$ is a radius.

radius of a sphere

The radius of a sphere is a line segment with one endpoint on the sphere and one endpoint at the center.

Example

rational numbers

The set of rational numbers consists of all numbers that can be written as $\frac{a}{b}$ where a and b are integers, but b is not equal to 0 .

Example

The number 0.5 is a rational number because it can be written as the fraction $\frac{1}{2}$.

rationalizing the denominator

Rationalizing the denominator is the process of eliminating a radical from the denominator of an expression. To rationalize the denominator, multiply by a form of one so that the radicand of the radical in the denominator is a perfect square.

Example

Rationalize the denominator of the expression $\frac{5}{\sqrt{3}}$.

$$
\begin{aligned}
\frac{5}{\sqrt{3}} & =\frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{5 \sqrt{3}}{\sqrt{9}} \\
& =\frac{5 \sqrt{3}}{3}
\end{aligned}
$$

ray

A ray is a portion of a line that begins with a single point and extends infinitely in one direction.

Example

The ray shown is ray $A B$.

real numbers

The set of real numbers consists of the set of rational numbers and the set of irrational numbers.

Examples

The numbers $-3,11.4, \frac{1}{2}$, and $\sqrt{5}$ are real numbers.

real part of a complex number

In a complex number of the form $a+b i$, the term a is called the real part of a complex number.

Example

The real part of the complex number $3+2 i$ is 3 .

reference angle

A reference angle is the angle of the right triangle being considered. The opposite side and adjacent side are named based on the reference angle.

Example

Reflexive Property

The reflexive property states that $a=a$.

Example

The statement $2=2$ is an example of the reflexive property.

relative frequency

A relative frequency is the ratio or percent of occurrences within a category to the total of the category.

Example

John surveys 100 students in his school about their favorite school subject. Of the 100 students, 37 chose math as their favorite subject. The relative frequency of students show selected math as their favorite subject is $\frac{37}{100}$, or 37%.

remote interior angles of a triangle

The remote interior angles of a triangle are the two angles that are not adjacent to the specified exterior angles.

Example

The remote interior angles with respect to exterior angles 4 are angles 1 and 2 .

restrict the domain

To restrict the domain of a function means to define a new domain for the function that is a subset of the original domain.

right cylinder

A disc translated through space in a direction perpendicular to the plane containing the disc forms a right cylinder.

Example

right rectangular prism

A rectangle translated through space in a direction perpendicular to the plane containing the rectangle forms a right rectangular prism.

Example

right triangular prism

A triangle translated through space in a direction perpendicular to the plane containing the triangle forms

Example

rigid motion

A rigid motion is a transformation of points in space. Translations, reflections, and rotations are examples of rigid motion.

roots

The roots of a quadratic equation indicate where the graph of the equation crosses the x-axis.

Example

The roots of the quadratic equation $x^{2}-4 x=-3$ are $x=3$ and $x=1$.

Rule of Compound Probability involving "and"

The Rule of Compound Probability involving "and" states: "If Event A and Event B are independent, then the probability that Event A happens and Event B happens is the product of the probability that Event A happens and the probability that Event B happens, given that Event A has happened."

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

Example

You flip a coin two times. Calculate the probability of flipping a heads on the first flip and flipping a heads on the second flip.
Let A represent the event of flipping a heads on the first flip. Let B represent the event of flipping a heads on the second flip.
$P(A$ and $B)=P(A) \cdot P(B)$
$P(A$ and $B)=\frac{1}{2} \cdot \frac{1}{2}$
$P(A$ or $B)=\frac{1}{4}$
So, the probability of flipping a heads on the first flip and flipping a heads on the second flip is $\frac{1}{4}$.

sample space

A list of all possible outcomes of an experiment is called a sample space.

Example

Flipping a coin two times consists of four outcomes: HH, HT, TH, and TT.

secant (sec)

The secant (sec) of an acute angle in a right triangle is the ratio of the length of the hypotenuse to the length of the side adjacent to the angle.

Example

In triangle $A B C$, the secant of angle A is:
$\sec A=\frac{\text { length of hypotenuse }}{\text { length of side adjacent to } \angle A}=\frac{A B}{A C}$
The expression "sec A " means "the secant of angle A."

secant of a circle

A secant of a circle is a line that intersects the circle at two points.

Example

The line intersecting the circle through points A and B is a secant.

secant segment

A secant segment is formed when two secants intersect outside of a circle. A secant segment begins at the point at which the two secants intersect, continues into the circle, and ends at the point at which the secant exits the circle.

Example

Segment GC and segment $N C$ are secant segments.

second differences

Second differences are the differences between consecutive values of the first differences.

Example

\boldsymbol{x}	y	First Differences	Second Differences
-3			
	-5	5	
-2			-2
		3	
-1	3	1	-2
0	4	-1	-2
1			-2
	3	-3	
2	0		-2
		-5	
3	-5		

sector of a circle

A sector of a circle is a region of the circle bounded by two radii and the included arc.

Example

In circle Y, arc $X Z$, radius $X Y$, and radius $Y Z$ form a sector.

segment bisector

A segment bisector is a line, line segment, or ray that intersects a line segment so that the line segment is divided into two segments of equal length.

Example

Line k is a segment bisector of segment $A C$. The lengths of segments $A B$ and $B C$ are equal.

segment of a circle

A segment of a circle is a region bounded by a chord and the included arc.

Example

In circle A, chord $\overline{B C}$ and arc $B C$ are the boundaries of a segment of the circle.

segments of a chord

Segments of a chord are the segments formed on a chord if two chords of a circle intersect.

Example

The segments of chord $\overline{H D}$ are $\overline{E H}$ and $\overline{E D}$. The segments of chord $\overline{R C}$ are $\overline{E R}$ and $\overline{E C}$.

semicircle

A semicircle is an arc whose endpoints form the endpoints of a diameter of the circle.

Example

Arc $X Y Z$ and arc $Z W X$ are semicircles of circle P.

set

A set is a collection of items. If x is a member of $\operatorname{set} B$, then x is an element of set B.

Example

Let E represent the set of even whole numbers.
$E=\{2,4,6,8, \ldots\}$

similar triangles

Similar triangles are triangles that have all pairs of corresponding angles congruent and all corresponding sides are proportional.

Example

Triangle $A B C$ is similar to triangle $D E F$.

simulation

A simulation is an experiment that models a real-life situation.

Example

You can simulate the selection of raffle numbers by using the random number generator on a graphing calculator.

sine (sin)

The sine (sin) of an acute angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.

Example

In triangle $A B C$, the sine of angle A is:
$\sin A=\frac{\text { length of side opposite } \angle A}{\text { length of hypotenuse }}=\frac{B C}{A B}$
The expression "sin A " means "the sine of angle A."

sketch

To sketch is to create a geometric figure without using tools such as a ruler, straightedge, compass, or protractor. A drawing is more accurate than a sketch.

skew lines

Skew lines are two lines that do not intersect and are not parallel. Skew lines do not lie in the same plane.

Example

Line m and line p are skew lines.

sphere

A sphere is the set of all points in space that are a given distance from a fixed point called the center of the sphere.

Example

A sphere is shown.

square root

A number b is a square root of a if $b^{2}=a$.

Example

The number 3 is a square root of 9 because $3^{2}=9$.

standard form (general form) of a quadratic function

A quadratic function written in the form $f(x)=a x^{2}+b x+c$, where $a \neq 0$, is in standard form, or general form.

Example

The function $f(x)=-5 x^{2}-10 x+1$ is written in standard form.

standard form of a parabola

The standard form of a parabola centered at the origin is an equation of the form $x^{2}=4 p y$ or $y^{2}=4 p x$, where p represents the distance from the vertex to the focus.

Example

The equation for the parabola shown can be written in standard form as $x^{2}=2 y$.

step function

A step function is a piecewise function whose pieces are disjoint constant functions.

Example

straightedge

A straightedge is a ruler with no numbers.

Substitution Property of Equality

The Substitution Property of Equality states: "If a and b are real numbers and $a=b$, then a can be substituted for b."

Example

If $A B=12 \mathrm{ft}$ and $C D=12 \mathrm{ft}$, then $A B=C D$.

Subtraction Property of Equality

The Subtraction Property of Equality states: "If $a=b$, then $a-c=b-c$."

Example

If $x+5=7$, then $x+5-5=7-5$, or $x=2$ is an example of the subtraction property of equality.

sum of two cubes

The sum of two cubes is an expression in the form $a^{3}+b^{3}$ that can be factored as $(a+b)\left(a^{2}-a b+b^{2}\right)$.

Example

The expression $x^{3}+8$ is a sum of two cubes because it can be written in the form $x^{3}+2^{3}$. The expression can be factored as $(x+2)\left(x^{2}-2 x+4\right)$.

supplementary angles

Two angles are supplementary if the sum of their measures is 180°.

Example

Angle 1 and angle 2 are supplementary angles.
If $m \angle 1=75^{\circ}$, then $m \angle 2=180^{\circ}-75^{\circ}=105^{\circ}$.

T

tangent (tan)

The tangent (tan) of an acute angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.

Example

In triangle $A B C$, the tangent of angle A is:
$\tan A=\frac{\text { length of side opposite } \angle A}{\text { length of side adjacent to } \angle A}=\frac{B C}{A C}$
The expression "tan A " means "the tangent of angle A."

tangent of a circle

A tangent of a circle is a line that intersects the circle at exactly one point, called the point of tangency.

Example

Line $R Q$ is tangent to circle P.

tangent segment

A tangent segment is a line segment formed by connecting a point outside of the circle to a point of tangency.

Example

Line segment $A B$ and line segment $A C$ are tangent segments.

term

Within a polynomial, each product is a term.

Example

The polynomial $2 x+3 y+5$ has three terms: $2 x, 3 y$, and 5.

theorem

A theorem is a statement that has been proven to be true.

Example

The Pythagorean Theorem states that if a right triangle has legs of lengths a and b and hypotenuse of length c, then $a^{2}+b^{2}=c^{2}$.

theoretical probability

Theoretical probability is the mathematical calculation that an event will happen in theory.

Example

The theoretical probability of rolling a 1 on a number cube is $\frac{1}{6}$.

transformation

A transformation is an operation that maps, or moves, a figure, called the preimage, to form a new figure called the image. Three types of transformations are reflections, rotations, and translations.

Example

Transitive Property of Equality

The Transitive Property of Equality states: "If $a=b$ and $b=c$, then $a=c$."

Example

If $x=y$ and $y=2$, then $x=2$ is an example of the Transitive Property of Equality.

translation

A translation is a transformation in which a figure is shifted so that each point of the figure moves the same distance in the same direction. The shift can be in a horizontal direction, a vertical direction, or both.

Example

The top trapezoid is a vertical translation of the bottom trapezoid by 5 units.

tree diagram

A tree diagram is a diagram that illustrates sequentially the possible outcomes of a given situation.

Example

trinomial

Polynomials with exactly three terms are trinomials.

Example

The polynomial $5 x^{2}-6 x+9$ is a trinomial.

truth table

A truth table is a table that summarizes all possible truth values for a conditional statement $p \rightarrow q$. The first two columns of a truth table represent all possible truth values for the propositional variables p and q. The last column represents the truth value of the conditional statement $p \rightarrow q$.

Example

The truth value of the conditional statement $p \rightarrow q$ is determined by the truth value of p and the truth value of q.

- If p is true and q is true, then $p \rightarrow q$ is true.
- If p is true and q is false, then $p \rightarrow q$ is false.
- If p is false and q is true, then $p \rightarrow q$ is true.
- If p is false and q is false, then $p \rightarrow q$ is true.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

truth value

The truth value of a conditional statement is whether the statement is true or false. If a conditional statement could be true, then the truth value of the statement is considered true. The truth value of a conditional statement is either true or false, but not both.

Example

The truth value of the conditional statement "If a
quadrilateral is a rectangle, then it is a square" is false.

two-column proof

A two-column proof is a proof consisting of two columns. In the left column are mathematical statements that are organized in logical steps. In the right column are the reasons for each mathematical statement.

Example

The proof shown is a two-column proof.
Statements

1. $\angle 1$ and $\angle 3$ are vertical
angles.
2. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
3. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
4. $\angle 1 \cong \angle 3$
Statements
5. $\angle 1$ and $\angle 3$ are vertical
angles.
6. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
7. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
8. $\angle 1 \cong \angle 3$
Statements
9. $\angle 1$ and $\angle 3$ are vertical
angles.
10. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
11. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
12. $\angle 1 \cong \angle 3$
Statements
13. $\angle 1$ and $\angle 3$ are vertical
angles.
14. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
15. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
16. $\angle 1 \cong \angle 3$
Statements
17. $\angle 1$ and $\angle 3$ are vertical
angles.
18. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
19. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
20. $\angle 1 \cong \angle 3$
Statements
21. $\angle 1$ and $\angle 3$ are vertical
angles.
22. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
23. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
24. $\angle 1 \cong \angle 3$
Statements
25. $\angle 1$ and $\angle 3$ are vertical
angles.
26. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
27. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
28. $\angle 1 \cong \angle 3$
Statements
29. $\angle 1$ and $\angle 3$ are vertical
angles.
30. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
31. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
32. $\angle 1 \cong \angle 3$
Statements
33. $\angle 1$ and $\angle 3$ are vertical
angles.
34. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
35. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
36. $\angle 1 \cong \angle 3$

Statements
1. $\angle 1$ and $\angle 3$ are vertical
angles.
2. $\angle 1$ and $\angle 2$ form a
linear pair. $\angle 2$ and $\angle 3$
form a linear pair.
3. $\angle 1$ and $\angle 2$ are
supplementary. $\angle 2$ and
$\angle 3$ are supplementary.
4. $\angle 1 \cong \angle 3$

two-way frequency table (contingency table)

A two-way frequency table, also called a contingency table, shows the number of data points and their frequencies for two variables. One variable is divided into rows, and the other is divided into columns.

Example

The two-way frequency table shows the hand(s) favored by people who do and do not participate in individual or team sports.

two-way relative frequency table

A two-way relative frequency table displays the relative frequencies for two categories of data.

Example

The two-way relative frequency table shows the hand(s) favored by people who do and do not participate in individual or team sports.

	Individual	Team	Does Not Play	Total
Left	$\frac{3}{63} \approx 4.8 \%$	$\frac{13}{63} \approx 20.6 \%$	$\frac{8}{63} \approx 12.7 \%$	$\frac{24}{63} \approx 38.1 \%$
Right	$\frac{6}{63} \approx 9.5 \%$	$\frac{23}{63} \approx 36.5 \%$	$\frac{4}{63} \approx 6.3 \%$	$\frac{33}{63} \approx 52.4 \%$
Mixed	$\frac{1}{63} \approx 1.6 \%$	$\frac{3}{63} \approx 4.8 \%$	$\frac{2}{63} \approx 3.2 \%$	$\frac{6}{63} \approx 9.5 \%$
Total	$\frac{10}{63} \approx 15.9 \%$	$\frac{39}{63} \approx 61.9 \%$	$\frac{14}{63} \approx 22.2 \%$	$\frac{63}{63}=100 \%$

two-way table

A two-way table shows the relationship between two data sets, one data set is organized in rows and the other data set is organized in columns.

Example

The two-way table shows all the possible sums that result from rolling two number cubes once.

2nd Number Cube

U

uniform probability model

A uniform probability model occurs when all the probabilities in a probability model are equally likely to occur.

Example

Rolling a number cube represents a uniform probability model because the probability of rolling each number is equal.

Venn diagram

A Venn diagram uses circles to show how elements among sets of numbers or objects are related.

vertex angle of an isosceles triangle

The vertex angle of an isosceles triangle is the angle formed by the two congruent legs.

Example

vertex form

A quadratic function written in vertex form is in the form $f(x)=a(x-h)^{2}+k$, where $a \neq 0$.

Example

The quadratic equation $y=2(x-5)^{2}+10$ is written in vertex form. The vertex of the graph is the point $(5,10)$.

Example
Whole numbers 1 -10

vertex of a parabola

The vertex of a parabola, which lies on the axis of symmetry, is the highest or lowest point on the parabola.

Example

The vertex of the parabola is the point $(1,-4)$, the minimum point on the parabola.

vertical angles

Vertical angles are two nonadjacent angles that are formed by two intersecting lines.

Examples

Angles 1 and 3 are vertical angles.
Angles 2 and 4 are vertical angles.

vertical dilation

A vertical dilation of a function is a transformation in which the y-coordinate of every point on the graph of the function is multiplied by a common factor.

Example

The coordinate notation $(x, y) \rightarrow(x, a y)$, where a is the dilation factor, indicates a vertical dilation.

vertical motion model

A vertical motion model is a quadratic equation that models the height of an object at a given time. The equation is of the form $g(t)=-16 t^{2}+v 0 t+h 0$, where $g(t)$ represents the height of the object in feet, t represents the time in seconds that the object has been moving, $v 0$ represents the initial velocity (speed) of the object in feet per second, and $h 0$ represents the initial height of the object in feet.

Example

A rock is thrown in the air at a velocity of 10 feet per second from a cliff that is 100 feet high. The height of the rock is modeled by the equation $y=-16 t^{2}+10 t+100$.

W

whole numbers

The set of whole numbers consists of the set of natural numbers and the number 0 .

Example

The numbers $0,1,2,3, \ldots$ are whole numbers.

Z

Zero Product Property

The Zero Product Property states that if the product of two or more factors is equal to zero, then at least one factor must be equal to zero. This is also called the Converse of Multiplication Property of Zero.

Example

If $(x-2)(x+3)=0$, then $x-2=0$ or $x+3=0$.

zeros

The x-intercepts of a graph of a quadratic function are also called the zeros of the quadratic function.

Example

The zeros of the quadratic function $f(x)=-2 x^{2}+4 x$ are $(0,0)$ and $(2,0)$.

Index

A

Absolute maximum
determining, from graph, 861, 864, 879, 895
and form of quadratic function, 894
interpreting meaning of, 888, 895
and interval of function, 881
and range of function, 880
See also Vertex(-ices)
Absolute minimum
determining, 863, 864, 895
interpreting meaning of, 888
and interval of function, 881
and range of function, 880
See also Vertex(-ices)
Acute scalene triangle, 1208
Acute triangles
altitudes of, 92
angle bisectors of, 82
on coordinate plane, 1202
identifying, 1207
medians of, 87
perpendicular bisectors of, 77
points of concurrency for, 97
scalene, 1208
Addition
of arguments vs. functions, 916, 917
Associative Property of Addition
for polynomials, 952
set notation for, 1086, 1089
closure under, 1078-1081
Commutative Property of Addition, 1088, 1089
with complex numbers, 1106-1110
Distributive Property of Division over Addition, 1087, 1089
Distributive Property of Multiplication over Addition, 1087, 1089
of polynomials, 951-952, 954-956
Addition Property of Equality, 154
Addition Rule for Probability, 1351
Additive identity, for real numbers, 1087, 1089
Additive inverse, of real numbers, 1087, 1089
Adjacent angles, 140-141
Adjacent arcs, 664
Adjacent side
defined, 569
of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 569-574
of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $574-577$
Algebra
for equation of a circle
to determine center and radius, 1237-1247
in standard form vs. in general form, 1237-1239
using Pythagorean Theorem, 1234-1236
with points of concurrency, 98-103
proving Hypotenuse-Leg Congruence Theorem with, 425
proving Side-Angle-Side Theorem with, 376
Algebraic expressions, simplifying with i, 1095
Algebraic method
of completing the square, 1015
of determining inverses for linear functions, 1155-1156
Algebraic reasoning
angles of right triangles, 588-589
proving Pythagorean Theorem with, 314
Algebraic solutions
of polynomials, 950-951
of systems of equations, 1062-1068
Algebra tiles, modeling multiplication of binomials with, 958-963, 968
Alternate Exterior Angle Converse Theorem, 186, 189
Alternate Exterior Angle Theorem, 180
Alternate Interior Angle Converse Theorem, 186, 188
Alternate Interior Angle Theorem, 178-179, 269
Altitude, 92-96
defined, 92
drawn to hypotenuse of right triangles, 304-310
geometric mean, 307-310
Right Triangle Altitude/Hypotenuse Theorem, 307
Right Triangle Altitude/Leg Theorem, 307
Right Triangle/Altitude Similarity Theorem, 304-306
Angle
adjacent, 140-141
bisecting, 57-59
of circles
central angle, 656, 662, 663, 665
inscribed angle, 665-670
measuring, 676-688
radian measure, 744-745
complementary, 137-139
copying/duplicating, 54-56
cosecant of, 599
cosine of, 606
cotangent of, 589-591
defined, 52
included, 280
inverse cosine of, 612
inverse sine of, 600
inverse tangent of, 591-593
linear pairs, 142-143
of perpendicular lines, 1192
reference, 569-574
right, 422
of rotation, 340
secant of, 610
sine of, 597
supplementary, 136, 138-139
symbol (\angle), 52
tangent of, 584-589
translating on coordinate plane, 52-54
of triangles
of congruent triangles, 360
exterior, 217-223
interior, remote, 218-219
interior, side length and, 213-217
remote, 218-219
similar triangles, 264, 268, 274-281, 283
spherical triangles, 447
See also specific types of triangles
vertex, 448
vertical, 144-145
Angle Addition Postulate, 152, 173
Angle-Angle-Angle (AAA), 404
Angle-Angle-Side (AAS) Congruence Theorem, 390-399, 406, 408
congruence statement for, 397-398
congruent triangles on coordinate plane, 393-395
constructing congruent triangles, 390-392
defined, 390
proof of, 396
Angle-Angle (AA) Similarity Theorem, 283
defined, 275
in indirect height measurement, 321
in indirect width measurement, 322-324
similar triangles, 274-276
Angle Bisector/Proportional Side Theorem, 286-290
applying, 288-290
defined, 286
proving, 287
Angle bisectors, 57-59, 82-86
Angle of rotation, 340
Angle postulates
Corresponding Angle Converse Postulate, 186-187
Corresponding Angle Postulate, 176-178

Angle relationships, 136-147
adjacent angles, 140-141
complementary angles, 137-139
linear pairs, 142-143
supplementary angles, 136, 138-139
vertical angles, 144-145
Angle-Side-Angle (ASA) Congruence Theorem, 384-388, 406, 407
congruence statement for, 397-398
congruent triangles on coordinate plane, 386-388
constructing congruent triangles, 384-385
defined, 385
proof of, 388
Angle theorems
Alternate Exterior Angle Converse Theorem, 186, 189
Alternate Exterior Angle Theorem, 180
Alternate Interior Angle Converse Theorem, 186, 188
Alternate Interior Angle Theorem, 178-179, 431
Same-Side Exterior Angle Converse Theorem, 187, 191
Same-Side Exterior Angle Theorem, 182
Same-Side Interior Angle Converse Theorem, 186, 190
Same-Side Interior Angle Theorem, 181
Angular velocity, 761-762
Annulus, 818
Approximate values
of square roots, 1004-1006
for zeros of quadratic functions, 1031-1032
Arc Addition Postulate, 664
Arc cosine, 612-614
Arc length, 735-743, 758
defined, 738
formula for, 738
and radius, 739-740
Arcs
adjacent, 664
Arc Addition Postulate, 664
arc length, 735-743, 758
and chords, 696-698
in copying line segments, 28
defined, 28,656
intercepted, 664, 665, 736
major, 656, 662, 663, 743
minor, 656, 662, 663, 736-737, 743
Parallel Lines-Congruent Arcs Theorem, 671
radian measure, 744-745
Arc sine, 600-601
Arc tangent, 591-593
Area
Cavalieri's principle for, 798-799
circles
sectors of, 749-751, 759-760
segments of, 752-754
of cross sections
of cones, 818
in hemispheres, 819
in geometric probability, 1472
inscribed polygons, 765-770
inside inscribed squares, 763
linear functions for height and width, 866-867
outside of inscribed squares, 764
of parallelograms, Cavalieri's principle for, 802
of polygons, 551
of triangles, 628-629, 635-637
of two-dimensional figures, approximating, 798-799
written as quadratic function, 859-860, 868-869
Area models
factoring polynomials with, 973-975, 984
for multiplication of binomials, 958-962
Argument of functions, operations on functions vs., 916, 917, 919, 921
Associative Property of Addition
for polynomials, 952
set notation for, 1086, 1089
Associative Property of Multiplication, 1086, 1089
a value
and completing the square, 1017
and graph of a quadratic function, 890-891
and opening of a parabola, 903, 905
and products of binomials, 962
and vertex form of quadratic functions, 909
Axis of symmetry
completing the square to identify, 1017-1018
determining, with Quadratic Formula, 1037, 1038
for functions with complex solutions, 1121
from graphs of quadratic functions, 1114-1116
of parabolas, 896, 897, 1262-1264, 1270-1273

B

Bar notation, 1083
Bases
area of, 812
of cones, 817
of solid figures, 812
Biconditional statements
Congruent Chord-Congruent Arc Converse Theorem, 677
Congruent Chord-Congruent Arc Theorem, 697
defined, 516
Equidistant Chord Converse Theorem, 694
Equidistant Chord Theorem, 694
Binomials, 1107
identifying, 945, 947-949
multiplication
modeling, 958-963, 968
of a monomial and a binomial, 966
special products, 992-995
of three binomials, 968
of a trinomial and a binomial, 968-970
of two binomials, 958-966
Bisecting
an angle, 57-59
by construction, 58-59
defined, 57
with patty (tracing) paper, 57
a line segment, 45-49
by construction, 46-49
defined, 45
with patty (tracing) paper, 45-46
Bisectors
angle, 57-59, 82-86
perpendicular, 62-65, 77-81, 690
segment, 45-49
Breaks, linear piecewise functions with, 1142-1145
See also Step functions
C
Calculator-based ranger (CBR)
modeling quadratic motion with, 1045-1052
selecting CBR data for analysis on graphing calculator, 1049
setting up graphing calculator with, 1045
Cavalieri's principle, 797-802
for area, 798-799
for volume, 800-802
CBR. See Calculator-based ranger
Ceiling function, 1149, 1150
Center of a circle algebraic determination of, 1237-1247
defined, 652
Central angle (circles), 662, 663, 665
defined, 656
determining, 662
radians, 744-745
Centroid
algebra used to locate, 99, 100
constructing, 87-91
defined, 91
of right triangles, 807-811
Chords (circles), 690-700
and arcs, 696-698
congruent, 692
defined, 653
diameter as, 654
and diameters, 690-694
inscribed angles formed by, 666
segments of, 699-700
Circles
Arc Addition Postulate, 664
arc length, 735-743, 758
defined, 738
formula for, 738
and radius, 739-740
arcs of, 28
adjacent, 664
Arc Addition Postulate, 664
arc length, 735-743, 758
and chords, 696-698
in copying line segments, 28
defined, 28,656
intercepted, 664, 665, 736
major, 656, 662, 663, 743
minor, 656, 662, 663, 736-737, 743
Parallel Lines-Congruent Arcs
Theorem, 671
radian measure, 744-745
center of
algebraic determination of, 1237-1247
defined, 652
central angle of, 662, 663, 665
defined, 656
determining, 662
radian measure, 744-745
chords, 690-700
and arcs, 696-698
congruent, 692
defined, 653
diameter as, 654
and diameters, 690-694
inscribed angles formed by, 666
segments of, 699-700
circular velocities, 761-762
circumference of, 758
circumscribed figures
polygons, 728
quadrilaterals, 732-733
squares, 764
triangles, 728
concentric, 748-749
congruent, 653
on coordinate plane, 1226-1231
in copying line segments, 27-30
defined, 664
diameter of, 758
and chords, 654, 690-694
and radius, 653
discs, 779
drawn with a compass, 27
equation of
to determine center and radius, 1237-1247
in standard form vs. in general form, 1237-1239
using Pythagorean Theorem, 1234-1236
inscribed angle of, 665-670
inscribed figures
polygons, 724-727
quadrilaterals, 729-730
squares, 763
triangles, 724-727
measuring angles of
determining measures, 687-688
inside the circle, 676-677
outside the circle, 678-682
vertices on the circle, 683-686
parallel lines intersecting, 671
points on, 1250-1256
radian measure, 744-745
radius of, 652-653
rotated through space, 779
secant of, 706-709
defined, 654
and tangent, 655
sectors of, 748-751
defined, 749
determining area of, 749-751, 759-760
segments of area of, 752-754
defined, 752
similar, 658-659
in solving problems, 758-770
tangent of, 702-705
defined, 655
and secant, 655
Circular velocities, 761-762
Circumcenter
algebra used to locate, 99, 101-102
constructing, 77-81
defined, 81
Circumference, 758
Circumscribed figures
polygons, 728
quadrilaterals, 732-733
rhombus, 731-733
squares, 764
triangles, 728
Closed intervals, 881
Closure property
for addition, 1078-1081
for division, 1079-1081
for exponentiation, 1092
for multiplication, 1079-1081
for subtraction, 1079-1081
Coefficient of determination
defined, 1049, 1052
determining, 1049-1050
predicting, 1052
Coefficient(s)
correlation, 1049
leading
and absolute maximum, 894
factoring expressions with, 887
of quadratic vs. linear functions, 872
in polynomials
and addition, 955
defined, 944
identifying, 944
Collinear points
defined, 5
in similar triangles, 261
Combinations, 1442-1445
defined, 1442
for probability of multiple trials of two independent events, 1455-1462
Commutative Property of Addition, 1088, 1089
Commutative Property of Multiplication
for binomials, 959
set notation for, 1088, 1089
Compass, 8, 27
Complement angle relationships (right triangles), 618-625
Complementary angles, 137-139
Complement of an event, 1300
Completing the square, 1013-1018, 1237
algebraic method, 1015
and determining roots of quadratic equations, 1016-1017
geometric method, 1014
Complex conjugates, 1107, 1111-1112

Complex number(s), 1096-1097, 1099-1112
defined, 1096
imaginary part of, 1096, 1104-1105
numbers and expressions in set of, 1097
operations with, 1106-1112
and powers of $i, 1100-1103$
properties of, 1097
and real numbers, 1096
real part of, 1096, 1104-1105
Complex solutions to quadratic equations, 1113-1122
calculating complex zeros, 1119-1120
determining presence of
with equations, 1117-1118
with graphs, 1117
and x-intercepts/zeros of functions, 1114-1116
Complex zeros, calculating, 1119-1120
Composite figures, volume of, 825-828
Compositions of functions, 1158-1159
Compound events
defined, 1332
involving "and," 1332-1343
involving "or," 1346-1357
Compound probabilities, on two-way tables, 1396-1411
frequency tables, 1399-1402
two-way (contingency) frequency tables, 1403-1405
two-way relative frequency tables, 1405-1411
Concavity (parabolas), 1262, 1264, 1266, 1270-1273
Concentric circles, 748-749
Conclusions
of conditional statements, 128
defined, 128
false, recognizing, 127
through induction or deduction, 122-127
Concurrent, 76
See also Points of concurrency
Conditional probability, 1414-1426
defined, 1416
dependent and independent events, 1422-1423
formula for
building, 1419-1421
using, 1424-1426
on two-way tables, 1416-1420
Conditional statements, 128-133
converse of, 186
defined, 128
inverse and contrapositive of, 456-459
rewriting, 132-133
truth tables for, 130-131
truth value of, 128-131
See also Biconditional statements
Cones
building, 807-810
cross-section shapes for, 834
diameter of, 780
height of, 780, 817
as rotation of triangles, 779

Cones (Cont.)
from stacking two-dimensional figures, 790,791
tranformations for, 792
volume of, 792, 802, 810-813
Congruence
symbol (\cong), 12
understanding, 358-360
Congruence statement
for Angle-Angle-Side Congruence Theorem, 397-398
for Angle-Side-Angle Congruence Theorem, 397-398
for Side-Angle-Side Congruence Theorem, 379-382
for Side-Side-Side Congruence Theorem, 380-382
Congruent angles, 59, 264, 275-281
Congruent Chord-Congruent Arc Converse Theorem, 677
Congruent Chord-Congruent Arc Theorem, 697
Congruent Complement Theorem, 168-170
Congruent line segments, 12-13, 29
Congruent Supplement Theorem, 165-168
Congruent triangles, 358-363
and Angle-Angle-Angle as not a congruence theorem, 404
congruence statements for, 361-362, 397-382
Congruence Theorems in determining, 406-410
constructing
Angle-Angle-Side Congruence Theorem, 390-392
Angle-Side-Angle Congruence Theorem, 384-385
Side-Angle-Side Congruence Theorem, 374-375
Side-Side-Side Congruence Theorem, 366-367
on coordinate plane
Angle-Angle-Side Congruence Theorem, 393-395
Angle-Side-Angle Congruence Theorem, 386-388
Side-Angle-Side Congruence Theorem, 376-378
Side-Side-Side Congruence Theorem, 368-371
corresponding angles of, 360
corresponding parts of, 440-446
corresponding parts of congruent triangles are congruent concept, 440-446
corresponding sides of, 358-359
points on perpendicular bisector of line segment equidistant to endpoints of line segment, 402-403
and Side-Side-Angle as not a congruence theorem, 405
Conjectures
converse, 188-191
defined, 176
from postulates, 149
theorems from, 149, 178
writing, 176-177
Constants, factoring polynomials with, 975
Construct (geometric figures)
circles, 27-28
congruent triangles
Angle-Angle-Side Congruence Theorem, 390-392
Angle-Side-Angle Congruence Theorem, 384-385
Hypotenuse-Leg Congruence Theorem, 424-425
Side-Angle-Side Congruence Theorem, 374-375
Side-Side-Side Congruence Theorem, 366-367
defined, 8
equilateral triangle, 68
$45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 241
isosceles right triangle, 241
isosceles triangle, 69
kites, 510
parallelograms, 496
rectangle, 71
rectangles, 486
rhombus, 500
similar triangles, 266, 274-281
squares, $8,70,84,481$
$30^{\circ}-60^{\circ}-90^{\circ}$ triangles, 249
trapezoids, 513
Construction proof, 163
Constructions
bisecting angles, 57-59
bisecting line segments, 45-49
centroid, 87-91
circumcenter, 77-81
copy/duplicate
angles, 55-56
a line segment, 27-34
incenter, 82-86
orthocenter, 92-97
parallel lines, 66-67
perpendicular lines, 62-65
through a point not on a line, 64-65
through a point on a line, 62-63, 65
points of concurrency, 74-75
Contingency tables, 1404
See also Two-way (contingency) frequency tables
Contradiction, proof by, 460
See also Indirect proof (proof by contradiction)
Contrapositive
of conditional statements, 456-459
in indirect proof, 460-461
Converse, 186
Converse of the Multiplication Property of Zero, 984
Converse of the Pythagorean Theorem, 315-316
Converse of Triangle Proportionality Theorem, 296

Conversion ratios, 568-574
for $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 568-574
for $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $574-577$
Coordinate plane
circles and polygons on, 1226-1231
classifying quadrilaterals on, 1210-1215
congruent triangles on
Angle-Angle-Side Congruence Theorem, 393-395
Angle-Side-Angle Congruence Theorem, 386-388
Side-Angle-Side Congruence Theorem, 376-378
Side-Side-Side Congruence Theorem, 368-371
dilations on, 266-267
Distance Formula on, 21-23, 71
distance on, 18-20, 24
line segments on
midpoint of, 36-38, 41, 43-44
translating, 24-26
parallel lines on, 1191
reflecting geometric figures on, 349-354
rotating geometric figures on, 340-347
translating angles on, 52-54
translating geometric figures on, 337-339
Coplanar lines, 9
Copying
an angle, 55-56
a line segment, 27-33
with an exact copy, 31-33
using circles, 27-30
Correlation coefficient, 1049
Corresponding Angle Converse Postulate, 186-187
Corresponding Angle Postulate, 176-178
Corresponding parts of congruent triangles are congruent (СРСТС), 440-446
applications of, 444-446
Isosceles Triangle Base Angle Converse Theorem proved by, 443
Isosceles Triangle Base Angle Theorem proved by, 442
Corresponding points, on inverses of functions, 1157
Cosecant (csc), 599
Cosecant ratio, 599
Cosine (cos)
defined, 606
Law of Cosines
appropriate use of, 638
defined, 634
deriving, 632-635
Cosine ratios, 605-616
inverse cosine, 612-614
secant ratio, 610-611
Cotangent (cot), 589
Cotangent ratio, 589-591
Counterexamples, 127, 1079
Counting Principle, 1324-1327

Cross sections

area of
for cylinders, 817-818
for hemispheres, 819-820
determining shapes of, 830-836
cones, 834
cubes, 832-833
cylinders, 830
hexagons, 835
pentagons, 835
pyramids, 833
spheres, 831
Cubes
cross-section shapes for, 832-833
difference of two cubes, 995-996, 998
sum of two cubes, 997-998
c value
and graphical behavior of function, 1118
and y-intercept of parabola, 903
Cycles, 1002
Cylinders
annulus of, 818
building, 804-806
cross-section shapes for, 830
height of, 778, 822, 823
oblique, 787, 801
radius of, 822,823
right, 787, 789, 801
as rotation of rectangles, 778
tranformations for, 792
from two-dimensional figures
by stacking, 788
by translation, 786-787
volume of, 791, 792, 804-806, 812-813, 822-823

D
Data, median of, 805
Decimals, repeating, 1083-1084
Deduction
defined, 121
identifying, 122-126
Degree
of polynomials, 945, 947-949
of products from multiplication of binomials, 964
of terms for polynomials, 944-945, 947-949
Degree measures
converting to radian measures, 744
defined, 662
of intercepted arcs, 736
of minor arcs, 736-737
Dependent events, 1320-1323, 1357
compound probability of
with "and," 1339
with "or," 1352-1356
conditional probability of, 1422-1426
on two-way tables, 1397-1398
Dependent quantities
from problem situations, 1174
in standard form of quadratic functions, 859, 863
in tables of values, 1154

Diagonals

of kites, 510, 556
of parallelograms, 496, 556
of quadrilaterals, 556
of rectangles, 486, 488
of rhombi, 500, 556
of squares, 484-485
of three-dimensional solids, 838-844
two-dimensional, 838
Diagonal translation, of threedimensional figures, 783, 785
Diameter
of circles, 758
and chords, 690-694
as longest chord, 654
and radius, 653
of concentric circles, 748-749
of cones, 780
of spheres, 816
Diameter-Chord Theorem, 691
Difference of two cubes, 995-996, 998
Difference of two squares, 992-994
Dilation factor, 922
Dilations
proving similar triangles, 279, 281
of quadratic functions, 921-924
of rectangles, 265
of similar triangles, 260-264, 266-267
Direct proof, 460
Directrix of a parabola, 1258, 1268, 1270-1273
Discriminant(s)
of quadratic equations, 1122
of Quadratic Formula, 1037-1041, 1118
Discs
of cylinders, 804
defined, 779
Disjoint sets, 1319, 1351
Distance
Angle Bisector/Proportional Side Theorem for, 288-290
on coordinate plane, 18-20, 24
Distance Formula, 21-23, 1197
on a graph, 20
to horizon, 686
between lines and points not on lines, 1197-1199
between points, 18-23
from three or more points. See Points of concurrency
using Pythagorean Theorem, 21
Distance Formula, 21-23, 1197
Distributive Property, 818
factoring with, 886
and greatest common factor, 972, 973
and imaginary numbers, 1120
and multiplication of polynomials, 963, 965-966, 968
and subtraction of polynomials, 954-956
to write quadratic equation in standard form, 859
Distributive Property of Division over Addition, 1087, 1089
Distributive Property of Division over Subtraction, 1087, 1089

Distributive Property of Multiplication over Addition, 1087, 1089
Distributive Property of Multiplication over Subtraction, 1087, 1089
Division
and associative properties, 1086
closure under, 1079-1081
and commutative properties, 1086
with complex numbers, 1111-1112
Distributive Property of Division over Addition, 1087, 1089
Distributive Property of Division over Subtraction, 1087, 1089
Domain
describing, 880, 882-883
determining, from inverse functions, 1172
of functions vs. other relations, 1152
and inverse of quadratic function, 1170, 1171
in linear piecewise functions, 1135, 1136, 1139, 1143
restricting the, 1172-1176
Dot paper, 782
Double roots, 1040, 1122
Draw (geometric figures), 8
Duplicating
an angle, 55-56
a line segment
with an exact copy, 31-33
with circles, 27-31

E

Element (of a set), 1319
combinations of, 1442-1445
repeated, permutations with, 1435-1439
Elliptic geometry, 149
Endpoint(s)
of angles, 52, 54
and graphing inequalities, 1143
in greatest and least integer functions, 1149, 1150
inclusion of, in step functions, 1145, 1148
of a line segment, 11, 26
of a ray, 10
Equality
Addition Property of, 154
Subtraction Property of, 155
Equal symbol (=), 12
Equidistant Chord Converse Theorem, 694
Equidistant Chord Theorem, 693
Equilateral triangles
altitudes of, 95
angle bisectors of, 85
constructing, 68
on coordinate plane, 1203
defined, 13
exterior angles of polygons, 544
medians of, 90
perpendicular bisectors of, 80
Equivalent functions, graphs of, 961
Error, in indirect measurement, 319
Euclid, 148

Euclidean geometry
defined, 148
non-Euclidean geometry vs., 148-149
Events (probability), 1298, 1319-1324
complements of, 1300
compound
defined, 1332
involving "and," 1332-1343
involving "or," 1346-1357
with replacements, 1360-1363, 1365
on two-way tables, 1396-1411
without replacements, 1363-1365
defined, 1298
dependent, 1320-1323, 1357
compound probability of, 1339, 1352-1356
conditional probability of, 1422-1426
on two-way tables, 1397-1398
expected value of, 1473-1479
independent, 1320-1323, 1336, 1357
compound probability of, 1339, 1346-1351
conditional probability of, 1422-1426
Rule of Compound Probability involving "and," 1336
on two-way tables, 1397, 1398
simulating, 1372-1380
Exact values
of square roots, 1006-1010
for zeros and roots of quadratic functions, 1033
Expected value
defined, 1474
probability of receiving, 1473-1479
Experimental probability, 1378, 1380
Exponential functions
inverses of, 1170
and one-to-one functions, 1169
Exponentiation, 1092
Exponents, of polynomials, 944, 955
Exterior Angle Inequality Theorem, 221-223
Exterior angles
of circles Exterior Angles of a Circle Theorem, 680-682
vertices of, 683-686
of polygons, 540-550 defined, 540 equilateral triangles, 544 hexagons, 542, 544, 548
measures of, 545-547
nonogons, 546-547
pentagons, 541-542, 544, 550
quadrilaterals, 541
squares, 544, 549
sum of, 540-544
of triangles, 217-223
Exterior Angle Inequality Theorem, 221-223
Exterior Angle Theorem, 220
Exterior Angles of a Circle Theorem, 680-682
Exterior Angle Theorem, 220
External secant segment, 706-709

F

Factored form
difference of squares in, 994
perfect square trinomials in, 993
quadratic equations in
and equations in standard/vertex form, 912-913
parabolas from, 904-905, 910
quadratic functions in, 885-892
calculating complex zeros of, 1120
determining equation from x-intercepts, 889-892
determining key characteristics, 888, 890-892
and vertex form, 909
writing functions, 887
sum of two cubes in, 998
verifying products of binomials with, 962
Factorials, 1430-1431
Factoring
defined, 886
of polynomials, 971-982
with area models, 973-975
with greatest common factor, 972-973, 981
with multiplication tables, 976-978, 997
and signs of quadratic expressions/ operations in factors, 979
trial and error method, 977-978
of quadratic equations, 986-989
calculating roots of equation, 986-989
completing the square, 1013-1018
determining zeros of functions, 1012-1013
Factors, operations in, 979
First differences, of linear vs. quadratic functions, 870, 873-875
Floor function, 1148, 1150
Flow chart proof, 159-161
Alternate Exterior Theorem, 180
Alternate Interior Angle Converse Theorem, 188
Alternate Interior Angle Theorem, 179
Congruent Complement Theorem, 169
Congruent Supplement Theorem, 165-167
defined, 159
Right Angle Congruence Theorem, 164
Same-Side Exterior Angle Theorem, 182
Same-Side Interior Angle Converse Theorem, 190
Triangle Proportionality Theorem, 291-294
Vertical Angle Theorem, 171
Focus of a parabola
defined, 1258
distance from vertex to, 1267-1273
on a graph, 1270-1273
FOIL method, 967
$45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 236-241, 568-574
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem, 237-240

Fractions

involving factorials, 1431
rationalizing the denominator of, 583
writing repeating decimals as, 1083-1084
Frequency, 1002
Frequency tables
defined, 1399
two-way (contingency), 1403
two-way relative frequency, 1405-1411
Function(s)
compositions of, 1158-1159
inverse of function as, 1152-1153, 1170-1172
operations on arguments of functions vs., 916, 917, 919, 921
and relations, 1152
See also specific functions, e.g.: Quadratic functions

G

General form
of a circle, 1237-1239
of a parabola, 1260
See also Standard form
Geometric figures
creating, 8-9
reflecting
on coordinate plane, 349-354
without graphing, 354-355
rotating
on coordinate plane, 340-347
without graphing, 347-348
translating
on coordinate plane, 337-339
without graphing, 340
See also specific topics; specific types of figures
Geometric mean, 307-310
Geometric method of completing the square, 1014
Geometric probability, 1468-1472
Goodwin, Edwin, 1011
Graphical method of determining inverses
for linear functions, 1156-1157, 1166-1169
for non-linear functions, 1166-1169
Graphical solutions
of quadratic functions, 882-883, 895
of systems of equations, 1062-1068
Graphing
inequalities, 1143
inverses of non-linear functions, 1171
step functions
with graphing calculator, 1147-1148, 1150
in problem situations, 1145
Graphing calculator
absolute maximum on, 861
absolute minimum on, 863
determining
key characteristics of parabolas, 902-907
quadratic regression, 1048
zeros of quadratic functions, 880
entering inequality symbols in, 1147
factoring with, 973
graphing step functions with, 1147-1148, 1150
multiplying binomials with, 960
selecting CBR data for analysis on, 1049
setting up CBR with, 1045
table function on, 951
value function on, 951
See also Calculator-based ranger (CBR)
Graphs
decreasing, 861
determining inverses of non-linear functions with, 1166-1169
of equivalent functions, 961
increasing, 861
linear functions
piecewise, 1134-1135, 1138-1139, 1143
quadratic function graphs vs., 871-872, 874-875
polynomials, and algebraic solutions, 950-951
quadratic equations, and solutions, 1039, 1117
quadratic functions
analyzing, 860-861, 863
and a-value, 890-891
comparing, 864
determining x-intercepts from, 879-880, 882-883
determining y-intercept from, 882-883
functions with multiple transformations, 923-925
linear function graphs vs., 871-872, 874-875
and solutions, 1039
zeros and x-intercepts of graph, 880
quadratic motion
identifying inequalities with, 1055
predicting features of, 1044
quadratic regression, 1048-1050, 1052
replicating trajectory similar to, 1051
step functions
analyzing, 1147, 1148
of greatest and least integer functions, 1148-1150
verifying products of binomials with, 961-962
Great circle of a sphere, 816
Greatest common factor
factoring polynomials with, 972-973, 981
of quadratic functions, 886-887
Greatest integer function (floor function), 1148, 1150

H

Half-closed intervals, 881
Half-open intervals, 881
Height
of cones, 780,817
of cylinders, 778, 822, 823
of hemispheres, 819,820
indirect measurement of, 318-321
linear functions for, 866-867
of prisms, 813
of solid figures, 812
Hemispheres, 819
defined, 816
height of, 819, 820
Hertz (unit), 1002
Hexagons
cross-section shapes for, 835
exterior angles of, 542, 544, 548
interior angles of, 535-538
Hinge Converse Theorem, 464-467
Hinge Theorem, 462-463
Horizontal lines, 1195-1196
identifying, 1195-1196
reflections over, 919, 920
writing equations for, 1196
Horizontal translation, 25, 26
of angles, 53
of quadratic functions, 917-918, 920, 923, 925
of three-dimensional figures, 783
h variable, in vertex form, 907
Hyperbolic geometry, 149
Hypotenuse
of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, $237,569-574$
of right triangles, altitudes drawn to, 304-310
of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, 246 , 574-577
Hypotenuse-Angle (HA) Congruence Theorem, 429-430
Hypotenuse-Leg (HL) Congruence Theorem, 422-426
Hypotheses
of conditional statement, 128
conjectures as, 176
defined, 128
rewriting, 132-133

I

i. See Imaginary numbers

Image
of angles, 54
defined, 24-26
of line segments, 25-26
pre-image same as, 54
Imaginary double roots, 1122
Imaginary numbers (i), 1091-1095
defined, 1093, 1100
numbers and expressions in set of, 1097
polynomials with, 1107-1110
powers of, 1092-1094, 1100-1103
pure, 1096, 1104
and real numbers, 1096
set of, 1104
simplifying expressions involving, 1094-1095
Imaginary part of a complex number, 1096, 1104
Imaginary roots, 1117
Imaginary zeros
calculating, 1119-1120
defined, 1117
Incenter
algebra used to locate, 99
constructing, 82-86
defined, 86
Included angle, 280
Included side, 280
Independent events, 1320-1323, 1357
compound probability of with "and," 1339
with "or," 1346-1351
conditional probability of, 1422-1426
multiple trials of two, 1453-1465 using combinations, 1455-1462 using formula for, 1463-1465
Rule of Compound Probability involving "and," 1336
two trials of two, 1450-1452
on two-way tables, 1397, 1398
Independent quantities
from problem situations, 1174
in standard form of quadratic functions, 859, 863
in tables of values, 1154
Indirect measurement, 318-324
defined, 318
of height, 318-321
of width, 322-324
Indirect proof (proof by contradiction), 460-461
Hinge Converse Theorem, 464-467
Hinge Theorem, 462-463
Tangent to a Circle Theorem, 684
Indivisibles, method of, 799
Induction
defined, 121
identifying, 122-126
Inequalities
graphing, 1143
linear piecewise functions with, 1142-1145
quadratic
identifying, on graphs, 1055
intervals as solutions to, 1056-1057
solving, with number line, 1056, 1057
solving, with Quadratic Formula, 1053-1060
symbols for, in graphing calculator, 1147
Inscribed angles (circles), 656, 665-670
Inscribed Angle Theorem, 667-670
Inscribed figures
parallelograms, 1229
polygons, 724-727, 765-770
quadrilaterals, 729-730
squares, 763, 1228
triangles, 724-727
Inscribed Right Triangle-Diameter Converse Theorem, 727
Inscribed Right Triangle-Diameter Theorem, 725-726

Integers

conditional statements about, 457
defined, 1079
numbers and expressions in set of, 1097
rational numbers vs., 1080
in real number system, 1079
in set of complex numbers, 1096, 1105
and set of whole numbers, 1004
solving equations with, 1082
Intercepted arcs (circles), 665
defined, 664
degree measures of, 736
Interior angles
of circles, vertices of, 676-677
of polygons, 528-538
defined, 528
measures of, 532, 533
sum of measures of, 528-538
Triangle Sum Theorem, 529
of triangles
remote, 218-219
and side length, 213-217, 236
Interior Angles of a Circle Theorem, 677
Intersecting sets, 1319
Intersection points
determining x-intercepts from, 879-880
interpretations of, for quadratic equations, 1034-1035
for systems of equations, 1062, 1063, 1065
Interval of decrease, for quadratic functions, 881-883
Interval of increase, for quadratic functions, 881-883
Intervals
closed, 881
half-closed, 881
half-open, 881
open, 881
for quadratic functions, 881-883
slope of, for step functions, 1145
as solutions to quadratic inequalities, 1056-1057
unbounded, 881
Inverse cosine (arc cosine), 612-614
Inverse functions
defined, 1155
notation for, 1155
and one-to-one functions, 1166
verifying, with compositions of functions, 1159
Inverse operations, 1153
Inverse(s)
additive, 1087, 1089
of conditional statements, 456-459
of linear functions, 1151-1163
algebraic determination, 1155-1156
and compositions of functions, 1158-1159
determining inverses of situations using words, 1152-1155
graphical determination, 11561157, 1166-1169
tables of values for determination, 1154-1155, 1166-1169
multiplicative, 1087, 1089
of non-linear functions, 1165-1176
determining equations of, 1170-1173
graphical determination, 1166-1169
graphing, 1171
inverses of quadratic functions, 1170-1173
and one-to-one functions, 1166-1169
tables of values for determination, 1166-1169
in terms of problem situations, 1174-1176
of quadratic functions, 1170-1173
Inverse sine (arc sine), 600-601
Inverse tangent (arc tangent), 591-593
Irrational numbers
closure property for, 1081
defined, 1081
numbers and expressions in set of, 1097
in real number system, 1081, 1083
in set of complex numbers, 1096, 1105
transcendental, 1011
Irrational roots, 1041
Irregularly shaped figures
approximating area of, 798-799
volume of, 824-828
Isometric paper (dot paper), 782
Isometric projection, 781
Isosceles right triangle, 241
Isosceles trapezoids, 514-518, 1230
Isosceles Triangle Altitude to Congruent Sides Theorem, 451
Isosceles Triangle Angle Bisector to Congruent Sides Theorem, 451
Isosceles Triangle Base Angle Converse Theorem, 443, 444
Isosceles Triangle Base Angle Theorem, 442, 445
Isosceles Triangle Base Theorem, 448
Isosceles Triangle Perpendicular Bisector Theorem, 450
Isosceles triangles
constructing, 8,69
on coordinate plane, 1203
defined, 13
identifying, 1206
similar, 276
vertex angle of, 448
Isosceles Triangle Vertex Angle Theorem, 449

K

Key characteristics
of parabolas, 901-913
determining, with graphing calculator, 902-907, 909
from quadratic equations in factored form, 904-905, 910
from quadratic equations in standard form, 902-903, 910, 912-913
from quadratic equations in vertex form, 906-907, 910
writing quadratic functions from, 908-909, 911
of quadratic functions
determining, from problem situation, 880
in factored form, 888, 890-892
Kites
characteristics of, 552-554
constructing, 510
defined, 510
diagonals of, 510, 556
properties of, 510-512
proving, 511-512
solve problems using, 523
k variable, in vertex form, 907
L
Law of Cosines
appropriate use of, 638
defined, 634
deriving, 632-635
Law of Sines
appropriate use of, 638
defined, 631
deriving, 630-631
Leading coefficient
and absolute maximum, 894
factoring expressions with, 887
of quadratic vs. linear functions, 872
Least integer function (ceiling function), 1149, 1150
Leg-Angle (LA) Congruence Theorem, 431-432, 444
Leg-Leg (LL) Congruence Theorem, 427-428
Length, linear functions for, 867-868
Like terms, combining
and addition of polynomials, 952, 955, 956
and $i, 1095$
and multiplication of polynomials, 965
and simplifying expressions with real numbers, 1088
and subtraction of polynomials, 954
Linear absolute value function(s)
inverse of, 1170, 1173
linear piecewise functions vs., 1137-1139
and one-to-one functions, 1169
Linear equations, in systems of quadratic equations, 1062-1064
Linear functions
inverses of, 1151-1163
algebraic determination, 1155-1156
and compositions of functions, 1158-1159
determining inverses of situations using words, 1152-1153
graphical determination, 1156-1157, 1166-1169
tables of values for determination, 1154-1155, 1166-1169
and one-to-one functions, 1169
quadratic functions vs., 865-876
first differences, 870
on graphs, 871-872, 874-875
second differences, 872-875
representations of, 866-867
Linear Pair Postulate, 150, 512, 540-542
Linear pair(s)
of angles, 142-143
defined, 143
Linear piecewise functions, 1133-1139
with breaks, 1142-1145
graphs of, 1134-1135
linear absolute value functions vs., 1137-1139
writing, 1136
See also Step functions
Linear velocity, 761-762
Line of reflection, for inverses of functions, 1157
Line(s), 4-5
concurrent, 76
coplanar, 9
defined, 4
dilating, 261
distance between points not on line and, 1197-1199
horizontal, 1195-1196
intersection of plane and, 7
naming, 14
parallel, 1188-1191
constructing, 66-67
converse conjectures, 188-191
equations of, 1189, 1190
identifying, 1190, 1193
intersecting circles, 671
Parallel Lines-Congruent Arcs Theorem, 671
Perpendicular/Parallel Line Theorem, 481-485
slopes of, 1188-1191, 1193
perpendicular, 1192-1194
conditional statements about, 459
constructing, 62-65
equations of, 1194
identifying, 1193
Perpendicular/Parallel Line Theorem, 481-485
slope of, 1193-1194
through a point not on a line, 63-65
through a point on a line, 62-63
skew, 9
symbol $(\leftrightarrow), 4$
through points, 4,5
unique, 4
vertical, 1195-1196
Line segment(s)
bisecting, 45-49
by construction, 46-49
defined, 45
with patty (tracing) paper, 45-46
concurrent, 76
congruent, 12-13, 29
copying/duplicating, 27-34
with an exact copy, 31-33
using circles, 27-31
defined, 11
end-points of, 11
measures of, 11
Midpoint Formula, 39-43
midpoint of, 36-44
by bisecting, 45-49
on coordinate plane, 36-38, 41, 43-44
Midpoint Formula, 39-43
naming, 11, 14
points on perpendicular bisector of equidistant to endpoints of segment, 402-403
symbol (-), 11
tangent, 703-705
translating, 24-26
Locus of points, 1258
"Lucky" numbers, 1077

M

Major arc (circles), 663
defined, 656
degree measure of, 662
length of, 743
naming, 656
Maximum, absolute. See Absolute maximum
Measurement
degrees of error in, 319
indirect, 318-324
Median
defined, 805
of a triangle, 87
Method of indivisibles, 799
Midpoint Formula, 39-43
Midpoints
and characteristics of polygons, 1228-1230
of line segment
by bisecting, 45-49
on coordinate plane, 36-38, 41, 43-44
Midpoint Formula, 39-43
Midsegments (of trapezoids), 519-522
Minimum, absolute. See Absolute minimum
Minor arc (circles), 662, 663
defined, 656
degree measure of, 662, 736-737
length of, 743
Modeling
of multiplication with binomials, 958-963, 968
of polynomials, for completing the square, 1013-1014
with quadratic functions
and problem situations, 878, 894
for real-world problems, 858-863
quadratic motion, 1043-1051
with calculator-based ranger, 1045-1052
predicting graphs of motion, 1044
quadratic regression of graphs, 1048-1050, 1052
replicating trajectory similar to graph, 1051

Monomials, 1107
identifying, 945, 947-949
multiplying a binomial by a, 966
Motion
circular, velocity in, 761-762
quadratic
graphs of, 1044, 1048-1052, 1055
modeling, 1043-1051
rigid. See also Rotation; Translation defined, 25
to determine points on a circle, 1255-1256
to prove similar circles, 658-659
in proving points on perpendicular bisector of equidistant to endpoints of segment, 403
vertical motion models, 878, 894
Multiplication
on arguments of functions vs. functions, 919, 921
Associative Property of Multiplication, 1086, 1089
closure under, 1079-1081
Commutative Property of Multiplication, 1088, 1089
with complex numbers, 1106-1110
Distributive Property of Multiplication over Addition, 1087, 1089
Distributive Property of Multiplication over Subtraction, 1087, 1089
of polynomials, 957-970
and Distributive Property, 965-966, 968
FOIL method, 967
modeling multiplication of binomials, 958-963, 968
with multiplication tables, 963-964, 968, 969, 995
special products of, 991-1000
Multiplication tables
factoring polynomials with, 976-978, 984, 997
multiplication of polynomials with, 963-964, 968, 969, 995
Multiplicative identity, for real numbers, 1087, 1089
Multiplicative inverse, of real numbers, 1087, 1089
"Multiply" (term), 971

N

Natural numbers
closure property for, 1078-1079
defined, 1078
numbers and expressions in set of, 1097
in real number system, 1078-1079
in set of complex numbers, 1096, 1105
solving equations with, 1082
Negative number(s)
principal square root of, 1102-1103
square roots of, 1092, 1094
Negative square roots, 1003
Non-Euclidean geometry, 137
Non-linear equations, 1062
See also Quadratic equations

Non-linear functions, inverses of, 1165-1176
determining equations of, 1170-1173
graphical determination, 1166-1169
graphing, 1171
inverses of quadratic functions, 1170-1173
and one-to-one functions, 1166-1169
tables of values for determination, 1166-1169
in terms of problem situations, 1174-1176
Nonogons, exterior angles of, 546-547
Non-uniform probability model, 1301-1302
Number i
defined, 1093
power of, 1092-1094
Number line, solving quadratic inequalities with, 1056, 1057

0

Oblique cylinders, 787, 801
Oblique rectangular prisms, 786, 800
Oblique triangular prism, 784
Obtuse scalene triangles, 367
Obtuse triangles
altitudes of, 93
angle bisectors of, 83
on coordinate plane, 1203
medians of, 88
perpendicular bisectors of, 78
points of concurrency for, 97
Octagons, interior angles of, 538
One-to-one functions
determinations of, 1166-1169
identifying types of, 1169
Open intervals, 881
Operations
closure property for, 1078-1081
on functions vs. arguments, 916, 917, 919, 921
inverse, 1153
and signs of quadratic expressions, 979
See also specific operations
Opposite side
defined, 569
of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 569-574
of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $574-577$
Organized lists, 1309, 1311
Orthocenter
algebra used to locate, 99, 102-103
constructing, 92-97
defined, 96
Outcomes (probability), 1298
defined, 1298
in independent and dependent events, 1320-1323
in probability models, 1298-1304

P

Parabola(s)
applications of, 1274-1276
axis of symmetry, 1262-1264, 1270-1273
concavity of, 1262, 1264, 1266, 1270-1273
defined, 861, 865, 1258
directrix of, 1258, 1268, 1270-1273
equations of, 1259-1261
focus of, 1270-1273
defined, 1258
distance from vertex to, 1267-1273
on a graph, 1270-1273
general form of, 1260
graphing, 1270-1273
key characteristics of, 901-913, 1262-1266
determining, with graphing calculator, 902-907, 909
from quadratic equations in factored form, 904-905, 910
from quadratic equations in standard form, 902-903, 910, 912-913
from quadratic equations in vertex form, 906-907, 910
writing quadratic functions from, 908-909, 911
opening of
from factored form of quadratic equation, 888, 890, 910
first/second differences and, 875
from standard form of quadratic equation, 902-907, 910
from vertex form of quadratic equation, 907-909, 910
writing equations from, 911
as sets of points, 1258
solving problems with, 1280-1290
standard form of, 1260, 1265
symmetric points, 896-897
vertex of, 896-897, 1262
coordinates of, 1264
distance from vertex to focus, 1267-1273
on graphs, 1270-1273
writing quadratic functions given characteristics of, 889-890
Paragraph proof, 162
defined, 162
of Triangle Proportionality Theorem, 291
Parallel lines, 1188-1191
constructing, 66-67
converse conjectures
Alternate Exterior Angle Converse Conjecture, 189
Alternate Interior Angle Converse Conjecture, 188
Same-Side Exterior Angle Converse Conjecture, 191
Same-Side Interior Angle Converse Conjecture, 190
equations of, 1189, 1190
identifying, 1190, 1193
intersecting circles, 671
Perpendicular/Parallel Line Theorem, 481-485
slopes of, 1188-1191, 1193
Parallel Lines-Congruent Arcs Theorem, 671
Parallelogram/Congruent-Parallel Side Theorem, 499

Parallelograms
area of, 551, 802
characteristics of, 552-554
constructing, 496
defined, 496
diagonals of, 496, 556
inscribed, 1229
properties of, 496-499 proving, 496-499 solve problems using, 503-505
rhombus, 500-503
rotating, 347-348
Parentheses, substitution and, 1031
Patterns, identifying through reasoning, 126
Penrose Triangle, 419
Pentagons
cross-section shapes for, 835
exterior angles of, 541-542, 544, 550
interior angles of, 534
Perfect squares
extracting, from radicals, 1008-1010
square roots of, 1003, 1004
Perfect square trinomials
and completing the square, 1013-1015
as special products, 992-995
Perimeter
constructing a rectangle given, 71
constructing a square given, 70
of triangles, 301
Permutations, 1432-1434
circular, 1440-1441
and combinations, 1442-1445
defined, 1432
with repeated elements, 1435-1439
Perpendicular bisectors
of chords, 690
defined, 62-65
of triangles, 77-81
Perpendicular lines, 1192-1194
conditional statements about, 459
constructing, 62-65
equations of, 1194
identifying, 1193
slope of, 1193-1194
through a point not on a line, 63-65
through a point on a line, 62-63
Perpendicular/Parallel Line Theorem, 481-485
Pi, 1011
Piecewise functions
linear, 1133-1139 with breaks, 1142-1145 graphs of, 1134-1135 linear absolute value functions vs., 1137-1139 writing, 1136
restricting domain with, 1173
Plane(s), 6-7
defined, 6
intersection of, 6-7
intersection of line and, 7
naming, 6
shapes of intersections of solids and, 830-836
Point of rotation, 340

Point of tangency, 655, 702
Point(s), 4
on circles, 1250-1256
collinear, 5
defined, 4
distance between, 18-23
distance between lines and, 1197-1199
lines passing through, 4, 5
locus of, 1258
reflecting, 349-352
See also Points of concurrency
Point-slope form, 1189
Points of concurrency, 73-106
for acute, obtuse, and right triangles, 97
algebra used to locate, 98-103
centroid, 87-91
circumcenter, 77-81
constructing, 74-75
defined, 76
incenter, 82-86
orthocenter, 92-97
Polygons
area, 551, 765-770
circumscribed, 728
conditional statements about, 458
on coordinate plane, 1227-1231
exterior angles of, 540-550
defined, 540
equilateral triangles, 544
hexagons, 542, 544, 548
measures of, 545-547
nonogons, 546-547
pentagons, 541-542, 544, 550
squares, 544, 549
sum of, 540-544
four-sided. See Quadrilaterals
hexagons, 535-538
cross-section shapes for, 835
exterior angles of, 542, 544, 548
interior angles of, 535-538
identifying, 555
inscribed, 724-727, 765-770
interior angles of, 528-538
defined, 528
measures of, 532, 533
sum of measures of, 528-538
Triangle Sum Theorem, 529
nonogons, 546-547
octagons, 538
pentagons, 534
cross-section shapes for, 835
exterior angles of, 541-542, 544, 550
interior angles of, 534
reflecting, 353
rotating, 345,347
undecagons, 534
Polynomial expressions (polynomials), 943-982
addition, 951-952, 954-956
binomials
identifying, 945, 947-949
multiplication, 958-966, 968-970
special products of, 992-995
defined, 944
degree of, 945, 947-949
degree of terms for, 944-945, 947-949
factoring, 971-982
with area models, 973-975
with greatest common factor, 972-973, 981
with multiplication tables, 976-978, 997
signs of quadratic expression and operations in factors, 979
trial and error method, 977-978
graphs, and algebraic solutions, 950-951
identifying, 945
with imaginary numbers, 1107-1110
monomials
identifying, 945, 947-949
multiplying a binomial by a, 966
multiplication, 957-970
and Distributive Property, 965-966, 968
FOIL method, 967
modeling multiplication of binomials, 958-963, 968
with multiplication tables, 963-964, 968, 969, 995
special products of, 991-1000
recognizing, 944, 945
special products, 991-1000
difference of two cubes, 995-996, 998
difference of two squares, 992-994
perfect square trinomials, 992-995
sum of two cubes, 997-998
standard form
factoring, 980
writing expressions in, 949
subtraction, 952-956
trinomials
factoring, 973-981
identifying, 945, 947-949
multiplication of a binomial and a, 968-970
perfect square trinomials, 992-995, 1013-1015
special products of, 995-998
Porro, Ignazio, 915
Porro Prism, 915
Positive square roots, 1003
Postulates, 148-152
conjectures from, 149
defined, 148
of Euclid, 148
See also individual postulates
Power(s)
of i, 1092-1094, 1100-1103
of polynomials, 944
Power to a Power Rule, 1101
Predicting
coefficient of determination, 1052
graphs of quadratic motion, 1044
Pre-image
of angles, 54
defined, 24-26
image same as, 54
of line segments, 25-26

Principal square roots
defined, 1003
of a negative number, 1102-1103
Prisms
height of, 813
rectangular, 784-785
diagonals of, 841-842
oblique, 786,800
right, 786, 788, 800
right, 789
tranformations for, 792
triangular, 782-783
oblique, 784
right, 784
from stacking two-dimensional figures, 789
volume of, 791, 792, 800, 813
Probability
Addition Rule for Probability, 1351
combinations, 1442-1445
compound
with "and," 1330-1344
calculating, 1360-1370
for data displayed in two-way
tables, 1396-1411
with "or," 1346-1357
with replacements, 1360-1363, 1365
on two-way tables, 1396-1411
without replacements, 1363-1365
conditional, 1414-1426
building formula for, 1419-1421
defined, 1416
dependability of, 1422-1423
on two-way tables, 1416-1420
using formula for, 1424-1426
Counting Principle, 1324-1327
defined, 1298
events, 1298, 1319-1324
complements of, 1300
defined, 1298
dependent, 1320-1323, 1339, 1352-1357, 1397-1398, 1422-1426
expected value of, 1473-1479
independent, 1320-1323, 1336, 1339, 1346-1351, 1357, 1397,
1398, 1422-1426
simulating, 1372-1380
expected value, 1473-1479
experimental, 1378, 1380
geometric, 1468-1472
models, probability, 1298-1304
Monty Hall problem, 1329
multiple trials of two independent events, 1453-1465
using combinations, 1455-1462
using formula, 1463-1465
outcome, 1298
permutations, 1432-1434
circular, 1440-1441
and combinations, 1442-1445
defined, 1432
with repeated elements, 1435-1439
sample spaces, 1298
calculating, 1327-1328
compound, 1306-1318
defined, 1298

Probability (Cont.)
determining, 1301
factorials, 1430-1431
organized lists, 1309, 1311
with replacements, 1360-1363, 1365
strings, 1428-1429
tree diagrams, 1306-1310, 1312-1315
without replacements, 1363-1365
sets, 1319-1320
simulation
defined, 1378
using random number generator, 1372-1380
theoretical, 1378, 1380
two trials of two independent events, 1450-1452
Probability models, 1298-1304
defined, 1298
non-uniform, 1301-1302
uniform, 1300
Problem situations
graphing step functions in, 1145
independent and dependent quantities from, 1174
inverses in, 1152-1155
inverses of non-linear functions in terms of, 1174-1176
key characteristics of quadratic functions from, 880
modeling, with quadratic functions, 878, 894
square roots in, 1002-1003
writing step functions from, 1146
Product, of complex numbers, 1106-1110
Product Rule, 1101
Pronic numbers, 1077
Proof, 119-134
Alternate Exterior Angle Theorem, 180
Alternate Interior Angle Theorem, 178-179
angle relationships, 140-147
coming to conclusions, 122-126
conditional statements, 128-133
Congruent Complement Theorem, 168-170
Congruent Supplement Theorem, 165-168
construction, 163
by contradiction, 460
with Corresponding Angle Converse Postulate, 186-187
with Corresponding Angle Postulate, 176-178
deduction, 121-126
defined, 159
direct, 460
flow chart. See Flow chart proof
indirect, 460-461
induction, 121-126
paragraph. See Paragraph proof
of parallel line converse conjectures, 188-191
Perpendicular/Parallel Line Theorem, 481-485
postulates and theorems, 148-152
properties of quadrilaterals
kites, 511-512
parallelograms, 496-499
rectangles, 487-488
rhombus, 500-502
squares, 482-485
trapezoids, 514-517
and properties of real numbers, 154-158
recognizing false conclusions, 127
Right Angle Congruence Theorem, 163-164
Side-Angle-Side Congruence Theorem, 379
supplementary and complementary angles, 136-139
two-column. See Two-column proof
types of reasoning, 121
Vertical Angle Theorem, 170-172
Properties of real numbers, 154-158
Addition Property of Equality, 154
Reflexive Property, 156
Substitution Property, 157
Subtraction Property of Equality, 155
Transitive Property, 158
Proportionality
in similar triangles, 274, 275, 277-281
proving Pythagorean Theorem with, 312-313
Right Triangle/Altitude Similarity Theorem, 306, 312-313
theorems, 286-301
Angle Bisector/Proportional Side Theorem, 286-290
Converse of Triangle Proportionality Theorem, 296
Proportional Segments Theorem, 297
Triangle Midsegment Theorem, 298-301
Triangle Proportionality Theorem, 291-295
Proportional Segments Theorem, 297
Proportions, in indirect measurement, 318-324
Propositional variables, 128
Protractor, 8
Pure imaginary numbers, 1096, 1104
Pyramids
cross-section shapes for, 833
rectangular, 790
from stacking two-dimensional figures, 790, 791
tranformations for, 792
triangular, 790
volume of, 792, 813
Pythagoras, 1001
Pythagorean Theorem
and complement angle relationships, 620-621
Converse of, 315-316
distance using, 21, 686
for equation of a circle, 1234-1236
to identify right triangles, 1205
for points on a circle, 1250-1253
proving
with algebraic reasoning, 314

Converse of, 315-316
with Right Triangle/Altitude Similarity Theorem, 312-313
with similar triangles, 312-313
proving $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem with, 237, 238
proving $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem with, 246
for side length of triangles, 819
for three-dimensional diagonals, 838, 840
for triangles on coordinate plane, 1227

Q

Quadratic equations
complex solutions to, 1113-1122
calculating complex zeros, 1119-1120
determining presence of, with equations, 1117-1118
determining presence of, with graphs, 1117
and x-intercepts/zeros of functions, 1114-1116
in factored form
and equations in standard/vertex form, 912-913
parabolas from, 904-905, 910
factoring, 986-989
completing the square, 1013-1018
determining zeros of functions, 1012-1013
graphs
determining presence of complex solutions with, 1117
and solutions, 1039
roots
completing the square to determine, 1016-1017
defined, 986
determining, 984-989
determining, with discriminant of Quadratic Formula, 1037-1041
determining, with Quadratic
Formula, 1030-1031, 1033-1036
irrational vs. rational, 1041
most efficient method of determining, 1041-1042
real, 1039
and solutions to equations, 1035
of special products, 994
solutions to, 1034, 1035, 1039
in standard form
and equations in factored/vertex form, 912-913
parabolas from, 902-903, 910, 912-913
systems of, 1061-1068
with one linear and one quadratic equation, 1062-1064
with two quadratic equations, 1064-1068
in vertex form
and equations in factored/standard form, 912-913
parabolas from, 906-907, 910
x-intercepts, 1039
zeros
completing the square to determine, 1016
real zeros, 1039
for special products, 995
Quadratic expressions, operations in factors and signs of, 979
Quadratic Formula, 1029-1042
defined, 1030
deriving, from functions in standard form, 1032
determining roots and zeros approximate values, 1030-1031 with discriminant of formula, 1037-1041
exact values, 1033-1036 most efficient method, 1041-1042
discriminant of, 1037-1041, 1118
and imaginary solutions to functions, 1118
solving quadratic inequalities with, 1053-1060
Quadratic functions
absolute maximum, 861, 895
absolute minimum, 863, 895
domain, 880, 882-883
factored form, 885-892
determining equation from x-intercepts, 889-892
determining key characteristics, 888, 890-892
writing functions in, 887
first differences, 870, 873-875
graphical solutions of, 882-883, 895
graphs
analyzing, 860-861, 863
and a-value, 890-891
comparing, 864
linear vs. quadratic functions, 871-872, 874-875
and solutions, 1039
zeros and x-intercepts, 984-986
greatest common factor of, 886-887
intervals for, 881-883
inverses of, 1170-1173
linear functions vs., 865-876
on graphs, 871-872, 874-875
second differences, 872-875
on tables, 870
modeling problem situations with, 878, 894
modeling real-world problems with, 858-863
and one-to-one functions, 1169
range, 880, 882-883
representations of, 868-869
roots
determining, with discriminant of Quadratic Formula, 1037-1041
determining, with Quadratic Formula, 1030-1031, 1033-1036
most efficient method of determining, 1041-1042 real, 1039
second differences, 872-875
standard form
deriving Quadratic Formula from, 1032
rewriting expressions in, 859, 863
tables of values
analyzing, 863
linear vs. quadratic functions, 870
transformations, 915-925
dilations, 921-923
graphing functions with multiple transformations, 923-925
identifying, from equations, 925
reflections, 918-920
translations, 916-918, 920
writing functions with multiple transformations, 923-925
vertex of
completing the square to identify, 1017-1018
from graphs, 893-900, 1114-1116
Quadratic Formula in determination, 1037, 1038
and vertex from of functions, 1121
written from parabolas, 908-909
x-intercepts, 1039
determining, from graphs, 879-880, 882-883
and zeros, 984-986, 1114-1116
y-intercept, 882-883, 895
zeros
calculating, 989
describing, 882-883
determining, 895, 1012-1013
and factoring equations, 1012-1013
number of, 1036-1038
real, 1039
and x-intercepts of graph, 880, 984-986
Quadratic inequalities
identifying, on graphs, 1055
intervals as solutions of, 1056-1057
solving, with number line, 1056, 1057
solving, with Quadratic Formula, 1053-1060
Quadratic motion
graphs
identifying inequalities with, 1055
predicting features of, 1044
quadratic regression, 1048-1050, 1052
replicating trajectory similar to, 1051
modeling, 1043-1051
with calculator-based ranger, 1045-1052
predicting graphs of motion, 1044
quadratic regression of graphs, 1048-1050, 1052
replicating trajectory similar to graph, 1051
Quadratic regression, 1048-1050, 1052
Quadrilateral-Opposite Angles Theorem, 729-730
Quadrilaterals
area of
parallelograms, 551, 802
polygons, 551
squares, 551
characteristics of, 552, 553
circumscribed, 732-733
classifying on coordinate plane, 1210-1215
conditional statements about, 456
defined, 480
diagonals of, 556
exterior angles of, 541
identifying, 504
inscribed, 729-730
kites
characteristics of, 552-554
constructing, 510
defined, 510
diagonals of, 510, 512, 556
properties of, 510-512, 523
Parallelogram/Congruent-Parallel Side
Theorem, 499
parallelograms
area of, 551, 802
characteristics of, 552-554
constructing, 496
defined, 496
diagonals of, 496, 556
inscribed, 1229
properties of, 496-499, 503-505
rhombus, 500-503
rotating, 347-348
Perpendicular/Parallel Line Theorem, 481-485
properties of, 480, 552-556
rectangles
characteristics of, 552-554
constructing, 71, 486
defined, 486
diagonals of, 486, 488
dilation of, 265
Perpendicular/Parallel Line
Theorem, 481-485
properties of, 486-491
rotated through space, 778, 805-806
rhombi
characteristics of, 552-554
circumscribed, 731-733
constructing, 500
on coordinate plane, 1212-1214
defined, 500
diagonals of, 500, 556
formed from isosceles trapezoids, 1230
properties of, 500-503, 506-507
squares
area of, 551
characteristics of, 552-554
circumscribed, 764
constructing, 8, 70, 481
on coordinate plane, 1210-1212, 1215
diagonals of, 484-485
exterior angles of polygons, 544, 549
inscribed, 763, 1228
Perpendicular/Parallel Line
Theorem, 481-485
properties of, 480-485, 492-493

Quadrilaterals (Cont.)
Trapezoid Midsegment Theorem, 521-522
trapezoids
base angles of, 513
characteristics of, 552-554
constructing, 513, 518
defined, 513
isosceles, 514-518, 1230
legs of, 513
midsegments of, 519-522
properties of, 513-517, 524-525
reflecting, 349-355
rotating, 340-348
translating, 337-340
Quotient, of complex numbers, 1111-1112

R

Radians, 744-745
Radical expressions (radicals)
defined, 1004
extracting perfect squares from, 1008-1010
Radicand
defined, 1004
of Quadratic Formula, 1038
Radius(-i)
and arc length, 739-740
of circles, 652-653
algebraic determination of, 1237-1247
as congruent line segments, 29
defined, 652
and diameter, 653
length of, 28
of cylinders, 822, 823
of spheres, 779, 816
Random number generator, 1372-1380
Range
of functions vs. other relations, 1152
from inverse function, 1172
and inverse of quadratic functions, 1170, 1171
of linear piecewise functions, 1136, 1139, 1173
of quadratic functions, 880, 882-883
Rate of change
of quadratic vs. linear functions, 869, 871
for step functions, 1146
Rationalizing the denominator, 583
Rational numbers
closure property for, 1080
defined, 1080
numbers and expressions in set of, 1097
in real number system, 1080, 1083
in set of complex numbers, 1096, 1105
solving equations with, 1082
Rational roots, 1041
Ratio(s)
in probability, 1298
of similar rectangles, 265
of similar triangles, 264, 277, 278
slope, 356

Ray(s)
of angles, 52
concurrent, 76
defined, 10
endpoint of, 10
naming, 14
symbol (\rightarrow), 10
Real numbers, 1081
closure over exponentiation for, 1092
numbers and expressions in set of, 1097
properties of, 154-158, 1085-1089
in set of complex numbers, 1104-1105
solving equations with, 1082
Real number system, 1077-1090
number sets, 1077-1084
closure property for, 1078-1081
determining if equations can be solved with, 1082
and imaginary/complex numbers, 1096
integers, 1079
irrational numbers, 1081, 1083
natural numbers, 1078-1079
rational numbers, 1080, 1083
Venn diagram of relationships between, 1081
whole numbers, 1078
set notation for, 1086-1087
Real part of a complex number, 1096, 1104
Real roots, of quadratic equations, 1039
Real zeros, of quadratic equations, 1039
Reasoning
deduction, 121-126
identifying types of, 122-126
induction, 121-126
Rectangles
characteristics of, 552-554
constructing, 71, 486
defined, 486
diagonals of, 486, 488
dilation of, 265
Perpendicular/Parallel Line Theorem, 481-485
properties of, 486-488
proving, 487-488
solve problems using, 489-491
rotated through space, 778, 805-806
Rectangular prisms
diagonals of, 841-842
oblique, 786,800
right, 786, 788, 800
from translating two-dimensional figures, 784-785
Rectangular pyramids, 790
Rectangular solids, diagonals of, 838-844
Reference angle
defined, 569
of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, $569-574$
of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, 574-577
Reflection(s)
congruent triangles Angle-Angle-Side Congruence Theorem, 393-395

Angle-Side-Angle Congruence

 Theorem, 386on coordinate plane, 349-354
defined, 349
and inverses of functions, 1157
of quadratic functions, 918-920
of triangles, 362
for congruence, 370-371
proving similarity, 270
for similarity, 279
without graphing, 354-355
Reflexive Property, 156, 434
Regression, quadratic, 1048-1050, 1052
Regular tetrahedron, 1465
Relations, functions vs. other, 1152
Relative frequency
defined, 1405
two-way relative frequency tables, 1405-1411
Remote interior angles, 218-219
Repeating decimals, writing as fractions, 1083-1084
Representations
of linear functions, 866-867
of quadratic functions, 868-869
Repunit numbers, 1077
Restricting the domain of functions, 1172-1176
Rhombus(-i)
characteristics of, 552-554
circumscribed, 731-733
constructing, 500
on coordinate plane, 1212-1214
defined, 500
diagonals of, 500, 556
formed from isosceles trapezoids, 1230
properties of, 500-503
proving, 500-502
solve problems using, 506-507
Right Angle Congruence Theorem, 163-164
Right angles, congruence of, 422
Right cylinders
from stacking two-dimensional figures, 789
from translating two-dimensional figures, 787
volume of, 801
Right prisms, 789
Right rectangular prisms
from stacking two-dimensional figures, 788
from translating two-dimensional figures, 786
volume of, 800
Right Triangle Altitude/Hypotenuse Theorem, 307
Right Triangle Altitude/Leg Theorem, 307
Right Triangle/Altitude Similarity Theorem
defined, 306
proving, 304-306
proving Pythagorean Theorem with, 312-313
Right triangles
altitudes of, 94, 307-310
angle bisectors of, 84
complement angle relationships in, 618-625
congruence theorems, 421-438
applying, 433-437
Hypotenuse-Angle Congruence Theorem, 429-430
Hypotenuse-Leg Congruence Theorem, 422-426
Leg-Angle Congruence Theorem, 431-432
Leg-Leg Congruence Theorem, 427-428
conversion ratios, 568-577
for $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, $568-574$
for $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, 574-577
on coordinate plane, 1202
cosine ratios, 605-616
inverse cosine, 612-614
secant ratio, 610-611
identifying, 358, 1205
isosceles, 241
medians of, 89
perpendicular bisectors of, 79
points of concurrency for, 97
similar
geometric mean, 307-310
Right Triangle Altitude/Hypotenuse Theorem, 307
Right Triangle Altitude/Leg Theorem, 307
Right Triangle/Altitude Similarity Theorem, 304-306
sine ratios, 595-604
cosecant ratio, 599
inverse sine, 600-601
tangent ratios, 580-589, 593
cotangent ratio, 589-591
inverse tangent, 591-593
Right triangular prism, 784
Rigid motion
defined, 25
to determine points on a circle, 1255-1256
to prove similar circles, 658-659
in proving points on perpendicular bisector of equidistant to endpoints of segment, 403
See also Rotation; Translation
Roots
defined, 986
determining, 984-989
by completing the square, 1016-1017
with discriminant of Quadratic Formula, 1037-1041
most efficient method of, 1041-1042
with Quadratic Formula, 1030-1031, 1033-1036
double, 1040, 1122
imaginary, 1117, 1122
irrational vs. rational, 1041
real, 1039
and solutions to equations, 1035
for special products, 994

Rotation
congruent triangles
Angle-Side-Angle Congruence
Theorem, 386
Side-Angle-Side Congruence
Theorem, 376-378
on coordinate plane, 340-347
defined, 340
proving similar triangles, 270, 279, 281
of triangles, 361
of two-dimensional figures through space, 778-780
to form cones, 807
to form cylinders, 805
Rule of Compound Probability involving

$$
\text { "and," } 1336
$$

S

Same-Side Exterior Angle Converse Theorem, 187, 191
Same-Side Exterior Angle Theorem, 182
Same-Side Interior Angle Converse Theorem, 186, 190
Same-Side Interior Angle Theorem, 181
Sample spaces (probability), 1298
calculating, 1327-1328
compound, 1306-1318
defined, 1298
determining, 1301
factorials, 1430-1431
organized lists, 1309, 1311
with replacements, 1360-1363, 1365
strings, 1428-1429
tree diagrams, 1306-1310, 1312-1315
without replacements, 1363-1365
Scale factor
with dilations
rectangles, 267
similar triangles, 267
with similar triangles
constructing similar triangles, 277, 279
proving similarity, 270
Scalene triangles
acute, 1208
on coordinate plane, 1203
identifying, 1204
obtuse, 367
Scenarios, writing equations for linear piecewise functions from, 1135
Secant (sec), 706-709
defined, 610, 654
and tangent, 655
Secant ratio, 610-611
Secant segments
defined, 706
external, 706-709
length of, 1227
Secant Segment Theorem, 707
Secant Tangent Theorem, 709
Second differences, of linear vs. quadratic functions, 872-875
Sector of a circle, 748-751
defined, 749
determining area of, 749-751, 759-760
number of, 749

Segment Addition Postulate, 151
Segment bisector
constructing, 45-49
defined, 45
Segment-Chord Theorem, 700
Segments
of a chord, 699-700
of a circle
area of, 752-754
defined, 752
Semicircle, 656
Sequences, identifying, 126
Set notation for real numbers, 1086-1087
Set(s), 1319-1320
of complex numbers, 1096, 1097, 1104-1105
defined, 1319
disjoint, 1319, 1351
of imaginary numbers, 1097, 1104
intersecting, 1319
of irrational numbers, 1097
of natural numbers, 1097
of rational numbers, 1097
of real numbers, 1097
of whole numbers, 1004, 1097
Side-Angle-Side (SAS) Congruence Theorem, 374-382, 406-408, 446
congruence statements for, 379-382
congruent triangles on coordinate plane, 376-378
constructing congruent triangles, 374-375
defined, 374
proof of, 379
Side-Angle-Side (SAS) Similarity Theorem, 280-281, 283
Side-Side-Angle (SSA), 404
Side-Side-Side (SSS) Congruence Theorem, 365-371, 407
congruence statement for, 380-382
congruent triangles on coordinate plane, 368-371
constructing congruent triangles, 366-367
proof of, 371
Side-Side-Side (SSS) Similarity Theorem, 277-279, 283
Signs
of first and second differences for functions, 875
of quadratic expressions, 979
Similar circles, 658-659
Similar triangles
constructing, 266-267
with Angle-Angle Similarity Theorem, 274-276
with Side-Angle-Side Similarity Theorem, 280-281
with Side-Side-Side Similarity Theorem, 277-279
defined, 268
dilations, 260-264, 266-267
geometric theorems proving, 268-269
indirect measurement using, 318-324
proving Pythagorean Theorem with, 312-313

Similar triangles (Cont.)
right
geometric mean, 307-310
Right Triangle Altitude/Hypotenuse Theorem, 307
Right Triangle Altitude/Leg Theorem, 307
Right Triangle/Altitude Similarity Theorem, 304-306
sides and angles not ensuring similarity, 283
transformations proving, 270-271
Simplifying
and addition of polynomials, 952
of expressions with imaginary numbers, 1094-1095
of expressions with real numbers, 1088
Simulation
defined, 1378
using random number generator, 1372-1380
Sine (sin)
defined, 597
Law of Sines
appropriate use of, 638
defined, 631
deriving, 630-631
Sine ratios, 595-604
cosecant ratio, 599
inverse sine, 600-601
Sketch (of geometric figures), 8
Skew lines, 9
Slope
cotangent ratio, 589-591
of horizontal lines, 1195-1196
of intervals in step functions, 1146
inverse tangent, 591-593
of parallel lines, 1188-1191, 1193
of perpendicular lines, 1193
of rotated lines, 356
tangent ratio, 580-589, 593
of vertical lines, 1195-1196
Slope ratio, 356
Special products of polynomials, 991-1000
difference of two cubes, 995-996, 998
difference of two squares, 992-994
perfect square trinomials, 992-995
sum of two cubes, 997-998
Spheres
cross-section shapes for, 831
defined, 816
diameter of, 816
great circle of, 816
radius of, 816
as rotation of circles, 779
volume of, 814-820
Spherical triangles, 447
Square roots, 1001-1010
approximate values, 1004-1006
defined, 1003
exact values, 1006-1010
extracting perfect squares from radicals, 1009-1010 and inverse of functions, 1171 of negative numbers, 1092, 1094
of perfect squares, 1003
positive and negative, 1003
in problem situations, 1002-1003
Squares (algebraic)
difference of two squares, 992-994
perfect square trinomials, 992-995
sum of two squares, 993
Squares (polygons)
area of, 551
characteristics of, 552-554
circumscribed, 764
constructing, 8, 70, 481
on coordinate plane, 1210-1212, 1215
diagonals of, 484-485
exterior angles of polygons, 544, 549
inscribed, 763, 1228
Perpendicular/Parallel Line Theorem, 481-485
properties of, 480-485
proving, 482-485
solve problems using, 492-493
Stacking, 788-793
cones from, 790, 791
cylinders from, 788, 789, 804
prisms from, 788, 789
pyramids from, 790, 791
Standard form
equation of a circle, 1237-1239
of a parabola, 1260, 1265
polynomials in
factoring, 980
writing expressions in, 949
quadratic equations in
and equations in factored/vertex form, 912-913
parabolas from, 902-903, 910, 912-913
quadratic functions in
calculating complex zeros of, 1119, 1120
deriving Quadratic Formula from, 1032
identifying vertex and axis of symmetry for, 1017-1018
and Quadratic Formula, 1031
rewriting expressions in, 859, 863
writing products of binomials in, 964
Step functions, 1141-1150
analyzing graphs of, 1147, 1148
graphing
with graphing calculator, 1147-1148, 1150
in problem situations, 1145
greatest integer function, 1148, 1150
least integer function, 1149, 1150
and linear piecewise functions with breaks, 1142-1145
writing, from problem situations, 1146
Straightedge, 8
Strings, 1428-1429, 1442-1445
Substitution
in composition of functions, 1158
parentheses in, 1031
Substitution Property, 157
Subtraction
on arguments vs. functions, 916, 917
and associative properties, 1086
closure under, 1079-1081
and commutative properties, 1086
with complex numbers, 1106-1110
Distributive Property of Division over Subtraction, 1087, 1089
Distributive Property of Multiplication over Subtraction, 1087, 1089
as inverse operation, 1153
of polynomials, 952-956
Subtraction Property of Equality, 155
Sum of two cubes, 997-998
Sum of two squares, 993
Supplementary angles, 136, 138-139
Symmetric points, on parabolas, 896-897

Symmetry

axis of
completing the square to identify, 1017-1018
determining, with Quadratic Formula, 1037, 1038
for functions with complex solutions, 1121
from graphs of quadratic functions, 1114-1116
of parabolas, 896, 897, 1262-1264, 1270-1273
in determining points on a circle, 1252, 1255-1256
of parabolas
axis of, 896, 897, 1262-1264, 1270-1273
on coordinate plane, 1261
lines of, 1262
Systems of quadratic equations, 1061-1068
with one linear and one quadratic equation, 1062-1064
with two quadratic equations, 1064-1068

T

Table function (graphing calculator), 951
Tables of values
inverses from
linear functions, 1154-1155, 1166-1169
non-linear functions, 1166-1169
for linear piecewise functions, 1134, 1135, 1137, 1138
for quadratic functions analyzing, 863
quadratic functions vs., 870
Tangent (tan), 702-705
defined, 584, 655
and secant, 655
Tangent ratios, 580-589, 593
cotangent ratio, 589-591
inverse tangent, 591-593
Tangent segments, 703-705
Tangent Segment Theorem, 704
Tangent to a Circle Theorem, 683-685
Terms
defined by undefined terms, 10-15
of polynomials
defined, 944
degree of, 944-945, 947-949

Tetrahedron, regular, 1465
Theorems, 148
from conjectures, 149
defined, 148
as proved conjectures, 178
proving similar triangles, 268-269
See also individual theorems
Theoretical probability, 1378, 1380
$30^{\circ}-60^{\circ}-90^{\circ}$ triangles, 244-251, 574-577
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem, 246-248
Three-dimensional solids
Cavalieri's principle for volume of, 800-802
cones
building, 807-810
cross-section shapes for, 834
diameter of, 780
height of, 780, 817
as rotation of triangles, 779
from stacking two-dimensional
figures, 790, 791
tranformations for, 792
volume of, 792, 802, 810-813
cubes
cross-section shapes for, 832-833
difference of two cubes,
995-996, 998
sum of two cubes, 997-998
cylinders
annulus of, 818
building, 804-806
cross-section shapes for, 830
height of, $778,822,823$
oblique, 787, 801
radius of, 822, 823
right, 787, 801
as rotation of rectangles, 778
by stacking two-dimensional figures, 788
tranformations for, 792
by translation of two-dimensional figures, 786-787
volume of, 791, 792, 804-806, 812-813, 822-823
diagonals of, 838-844
prisms
height of, 813
rectangular, 784-786, 788, 800, 841-842
right, 789
right rectangular, 786, 800
tranformations for, 792
triangular, 782-784, 789
volume of, 791, 792, 800, 813
pyramids
cross-section shapes for, 833
rectangular, 790
from stacking two-dimensional
figures, 790, 791
tranformations for, 792
triangular, 790
volume of, 792, 813
shapes of intersections of planes and, 830-836
spheres
cross-section shapes for, 831
defined, 816
diameter of, 816
great circle of, 816
radius of, 816
as rotation of circles, 779
volume of, 814-820
from two-dimensional figures
rotated, 778-780
stacked, 788-793
translated, 782-787
volume of
Cavalieri's principle for, 800-802
cones, 792, 802, 810-813
cylinders, 791, 792, 804-806, 812-813, 822-823
prisms, 791, 792, 800, 813
pyramids, 792, 813
spheres, 814-820
Transcendental irrational numbers, 1011
Transformations
for cones, 792
for cylinders, 792
defined, 25
dilations
proving similar triangles, 279, 281
of rectangles, 265
similar triangles, 260-264, 266-267
and graphs of inverses of functions, 1157
identifying, 262
for prisms, 792
proving similar triangles, 270-271, 279, 281
for pyramids, 792
quadratic functions, 915-925
dilations, 921-923
graphing functions with multiple transformations, 923-925
identifying, from equations, 925
reflections, 918-920
translations, 916-918, 920
writing functions with multiple transformations, 923-925
reflection
congruent triangles, 386, 393-395
on coordinate plane, 349-354
defined, 349
of trapezoids, 349-355
of triangles, 270, 279, 362, 370-371
without graphing, 354-355
rigid motion
defined, 25
to determine points on a circle, 1255-1256
to prove similar circles, 658-659
in proving points on perpendicular bisector of equidistant to endpoints of segment, 403
rotation
congruent triangles, 376-378, 386
on coordinate plane, 340-347
defined, 340
proving similar triangles, 270, 279, 281
of trapezoids, 340-348
of triangles, 361
of two-dimensional figures through space, 778-780, 805, 807
translation
of angles, 52-54
on coordinate plane, 25-26, 337-339
by copying/duplicating line segments, 27-33
defined, 25
diagonal, 783
to form three-dimensional figures, 782-787
horizontal, 25, 26, 53, 783
of line segments, 24-26
of parallel lines, 1191
proving similar triangles, 279, 281
of trapezoids, 337-340
of triangles, 358-359
of two-dimensional figures through space, 782-787
vertical, $25,26,53,783$
without graphing, 340
of trapezoids
reflecting, 349-355
rotating, 340-348
translating, 337-340
Transitive Property, 158
Translation
of angles, 52-54
on coordinate plane, 25-26
by copying/duplicating line segments, 27-33
defined, 25
diagonal, 783
to form three-dimensional figures, 782-787
of geometric figures
on coordinate plane, 337-339
without graphing, 340
horizontal, 25, 26, 53
of angles, 53
of three-dimensional figures, 783
of line segments, 24-26
of parallel lines, 1191
proving similar triangles, 279, 281
of quadratic functions, 916-918, 920
of triangles, 358-359
of two-dimensional figures through space, 782-787
vertical, $25,26,53$
of angles, 53
of three-dimensional figures, 783
Trapezoid Midsegment Theorem, 521-522
Trapezoids
base angles of, 513
characteristics of, 552-554
constructing, 513, 518
defined, 513
isosceles, 514-518
constructing, 518
defined, 514
proving properties of, 514-517
rhombus formed from, 1230
legs of, 513
midsegments of, 519-522
on coordinate plane, 519

Trapezoids (Cont.)
defined, 520
Trapezoid Midsegment Theorem, 521
properties of, 513-517
proving, 514-517
solve problems using, 524-525
reflecting, 349-355
rotating, 340-348
translating, 337-340
Tree diagrams, 1306-1310, 1312-1315
Trial and error method, 977-978
Triangle Inequality Theorem, 230-233
Triangle Midsegment Theorem, 298-301
Triangle Proportionality Theorem, 291-295
Converse of, 296
defined, 291
proving, 291-295
Triangles
acute, 1202
altitudes of, 92
angle bisectors of, 82
on coordinate plane, 1202
identifying, 1207
medians of, 87
perpendicular bisectors of, 77
points of concurrency for, 97
altitudes of, 92-96
analyzing, 213-217
angle bisectors of, 82-86
centroid of, 91
circumcenter of, 81
circumscribed, 728
classifying, 1202-1208
congruent, 358-363
and Angle-Angle-Angle as not a congruence theorem, 404
Angle-Angle-Side Congruence Theorem, 390-395
Angle-Side-Angle Congruence Theorem, 384-388
congruence statements for, 361-362
Congruence Theorems in determining, 406-410
corresponding angles of, 360
corresponding parts of, 440-446 corresponding parts of congruent triangles are congruent, 440-446
corresponding sides of, 358-359
points on perpendicular bisector of line segment equidistant to endpoints of line segment, 402-403
Side-Angle-Side Congruence Theorem, 374-378
and Side-Side-Angle as not a congruence theorem, 405
Side-Side-Side Congruence Theorem, 366-371
constructing, 68-69
on coordinate plane, 1202
defined, 13
equilateral
altitudes of, 95
angle bisectors of, 85
constructing, 68
on coordinate plane, 1203
defined, 13
exterior angles of polygons, 544
medians of, 90
perpendicular bisectors of, 80
exterior angles, 217-223
Exterior Angle Inequality Theorem, 221
Exterior Angle Theorem, 220
exterior angles of, 217-223
$45^{\circ}-45^{\circ}-90^{\circ}, 236-241,568-574$
incenter of, 86
inscribed in circles, 724-727
interior angles
remote, 218-219
and side length, 213-217, 236
isosceles
constructing, 8,69
on coordinate plane, 1203
defined, 13
identifying, 1206
Isosceles Triangle Altitude to Congruent Sides Theorem, 451
Isosceles Triangle Angle Bisector to Congruent Sides Theorem, 451
Isosceles Triangle Base Angle Converse Theorem, 444
Isosceles Triangle Base Angle Theorem, 445
Isosceles Triangle Base Theorem, 448
Isosceles Triangle Perpendicular
Bisector Theorem, 450
Isosceles Triangle Vertex Angle Theorem, 449
similar, 276
vertex angle of, 448
medians of, 87-91
obtuse, 1203
altitudes of, 93
angle bisectors of, 83
on coordinate plane, 1203
medians of, 88
perpendicular bisectors of, 78
points of concurrency for, 97
orthocenter of, 96
perimeter of, using Triangle Midsegment Theorem, 301
perpendicular bisectors of, 77-81
proportionality theorems, 286-301
Angle Bisector/Proportional Side Theorem, 286-290
Converse of Triangle Proportionality Theorem, 296
Proportional Segments Theorem, 297
Triangle Midsegment Theorem, 298-301
Triangle Proportionality Theorem, 291-295
right
altitudes of, 94, 307-310
angle bisectors of, 84
complement angle relationships in, 618-625
congruence theorems, 421-438
conversion ratios, 568-577
on coordinate plane, 1202
cosine ratios, 605-616
identifying, 358, 1205
isosceles, 241
medians of, 89
perpendicular bisectors of, 79
points of concurrency for, 97
similar, 304-310
sine ratios, 595-604
tangent ratios, 580-589, 593
rotated through space, 780, 807
scalene
acute, 1208
on coordinate plane, 1203
identifying, 1204
obtuse, 367
side lengths, 230-233
of congruent triangles, 358-359, 368, 369
geometric mean for, 307-310
and interior angles, 213-217, 236
of similar triangles, 274-275, 277-281, 283
Triangle Inequality Theorem, 233
similar
constructing, 266-267, 274-281
defined, 268
dilations, 260-264, 266-267
geometric theorems proving, 268-269
indirect measurement using, 318-324
proving Pythagorean Theorem with, 312-313
right, 304-310
sides and angles not ensuring similarity, 283
transformations proving, 270-271
spherical, 447
$30^{\circ}-60^{\circ}-90^{\circ}, 244-251,574-577$
translation of, 358-359
Triangle Inequality Theorem, 230-233
Triangle Sum Theorem, 212, 218, 227, 269, 315-316, 529
vertices' coordinates, 300
Triangle Sum Theorem, 218, 227, 529
Converse of the Pythagorean Theorem proved with, 315-316
defined, 212
in proving similar triangles, 269
Triangular prisms, 782-783
oblique, 784
right, 784
from stacking two-dimensional figures, 789
Triangular pyramids, 790
Trigonometry
area of triangle
applying, 635-637
deriving, 628-629
complement angle relationships, 618-625
conversion ratios, 568-574
for $45^{\circ}-45^{\circ}-90^{\circ}$ triangles, 568-574
for $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, $574-577$
cosine ratios, 605-616
inverse cosine, 612-614
secant ratio, 610-611
Law of Cosines
appropriate use of, 638
defined, 634
deriving, 632-635
Law of Sines
appropriate use of, 638
defined, 631
deriving, 630-631
sine ratios, 595-604
cosecant ratio, 599
inverse sine, 600-601
tangent ratios, 580-589, 593
cotangent ratio, 589-591
inverse tangent, 591-593
Trinomials, 1107
factoring, 973-981
identifying, 945, 947-949
multiplication of a binomial and a, 968-970
perfect square trinomials and completing the square, 1013-1015
as special products, 992-995
special products of, 995-998
Truth tables, 130-131
Truth values
of conditional statements, 128-131
and their contrapositives, 459
and their inverses, 459
defined, 128
on truth tables, 130-131
Two-column proof, 162
Alternate Exterior Angle Converse Theorem, 189
Alternate Interior Angle Theorem, 179
with Angle Addition Postulate, 173
Angle-Angle-Side Congruence Theorem, 396
Angle Bisector/Proportional Side Theorem, 287
Angle-Side-Angle Congruence Theorem, 388
Congruent Chord-Congruent Arc Converse Theorem, 677
Congruent Chord-Congruent Arc Theorem, 697
Congruent Complement Theorem, 170
Congruent Supplement Theorem, 168
with CPCTC, 440-443
defined, 162
Diameter-Chord Theorem, 691
Equidistant Chord Converse Theorem, 694
Equidistant Chord Theorem, 693
Exterior Angles of a Circle Theorem, 680-682
Hypotenuse-Leg Congruence Theorem, 423
indirect, 460, 461, 463, 465
Inscribed Angle Theorem, 667-669
Inscribed Right Triangle-Diameter Converse Theorem, 727
Inscribed Right Triangle-Diameter Theorem, 726
Interior Angles of a Circle Theorem, 677
of isosceles triangle theorems, 448-452
Perpendicular/Parallel Line Theorem, 482-484
points on perpendicular bisector of line segment equidistant to endpoints of line segment, 402-403
properties of quadrilaterals
isosceles trapezoids, 514, 515
kites, 511-512
parallelograms, 496, 497
rectangles, 487
Quadrilateral-Opposite Angles Theorem, 730
of right triangle congruence theorems, 435, 436
Same-Side Exterior Angle Converse Theorem, 191
Same-Side Interior Angle Theorem, 181
Secant Segment Theorem, 707
Secant Tangent Theorem, 709
Segment-Chord Theorem, 700
Side-Side-Side Congruence Theorem, 371
Tangent Segment Theorem, 704
Trapezoid Midsegment Theorem, 522
Triangle Midsegment Theorem, 298
Triangle Proportionality Theorem, 295
Vertical Angle Theorem, 172
Two-dimensional figures
area of, 798-799
diagonals of, 838
rotating through space, 777-780
stacking, 788-793
translating, 782-787
See also individual types of figures
Two-way (contingency) frequency tables, 1403-1405
Two-way relative frequency tables, 1405-1411
Two-way tables, 1414-1415
compound probabilities on, 1396-1411
frequency tables, 1399-1402
two-way (contingency) frequency tables, 1403-1405
two-way relative frequency tables, 1405-1411
conditional probability on, 1416-1420
defined, 1396

U

Unbounded intervals, 881
Undecagons, interior angles of, 534
Undefined terms, defining new terms with, 10-15
Uniform probability model, 1300

V

Value function (graphing calculator), 951
Variables
distributing, 859
extracting perfect squares from radicals with, 1009
Velocity
angular, 761
in circular motion, 761-762
linear, 761
Venn diagrams, 553, 1081

Vertex angle (isosceles triangles), 448
Vertex form
quadratic equations in and equations in factored/standard form, 912-913
parabolas from, 906-907, 910
quadratic expressions in, and completing the square, 1013-1018
quadratic functions in determining vertex from, 1121 and factored form, 909
Vertex(-ices)
of angles of circles, 676
central angles, 676
inscribed angles, 676
located inside the circle, 676-677
located on the circle, 683-686
located outside the circle, 678-682
for functions with complex solutions, 1121
of inscribed polygons, 724
of parabolas, 896-897, 1267-1273
coordinates of, 1264, 1266
defined, 1262
determining, from vertex form of quadratic function, 907-909
determining, with graphing calculator, 902-907
distance to focus from, 1267-1273
on a graph, 1270-1273
writing equations from, 911
of parallelograms, 347, 354-355
of quadratic functions
completing the square to identify, 1017-1018
from graphs, 893-900, 1114-1116
Quadratic Formula in determination, 1037, 1038
and vertex from of functions, 1121
of quadrilaterals
classification based on, 1212-1215
determining, 1210-1212
of trapezoids, 340
of triangles
coordinates of, 300
similar triangles, 305
See also Absolute maximum; Absolute minimum
Vertical angles, 144-145
Vertical Angle Theorem
defined, 170
proof of, 170-172
in proving similar triangles, 269
Vertical compression, of quadratic functions, 921-924
Vertical dilations, of quadratic functions, 922-924
Vertical lines, 1195-1196
identifying, 1195-1196
reflections over, 919-920
writing equations for, 1196
Vertical Line Test, 1144, 1170, 1172, 1175
Vertical motion models, 878,894
Vertical stretching, of quadratic functions, 921-924

Vertical translations, 25, 26
of angles, 53
of quadratic functions, 917, 920, 924, 925
of three-dimensional figures, 783
Volume
approximating, 824
Cavalieri's principle for, 800-802
of composite figures, 825-828
of cones, 792, 810-811
of cylinders, 791, 792, 804-806,
812-813, 822-823
of irregularly shaped figures, 824-828
of prisms, 791, 792, 813
of pyramids, 792, 813
solving problems involving, 822-828
of spheres, 814-820

W

Wave speed, 1002
Whole numbers
closure property for, 1079
defined, 1004
and integers, 1004
numbers and expressions in set of, 1097
in real number system, 1078
in set of complex numbers, 1096, 1105
solving equations with, 1082
Width
indirect measurement of, 322-324
linear functions for, 867-868

X

x-intercept(s)
interpreting meaning of, 888
in linear binomial expressions, 961
of linear piecewise functions, 1136, 1139
number of, 1039
of quadratic equations, 1039
of quadratic functions
from factored form of equation, 888
factored form of functions from, 889-892
from graph, 879-880, 882-883
number of, 1039
and zeros, 984-986, 1114-1116

Y

y-intercept(s)
interpreting meaning of, 888
of linear piecewise functions, 1136, 1139
of parabola
and c-value, 903
determining, with graphing calculator, 902-907
of quadratic functions, 1114-1116
from factored form of function, 891, 895
from graph, 882-883
linear functions vs., 869, 871

Z

Zero (term), 983
Zero pairs, factoring with area models and, 974
Zero Product Property, determining solutions of quadratic equations with, 984

Zeros
imaginary
calculating, 1119-1120
defined, 1117
of parabolas
determining, with graphing
calculator, 902-907
writing equations from, 911
of quadratic equations completing the square to determine, 1016 real, 1039 for special products, 995
of quadratic functions, 1114-1116 calculating, 989 describing, 882-883 and discriminant of Quadratic

Formula, 1037-1041
and factoring of functions, 1012-1013
from graphs, 891-892, 895
most efficient method of determining, 1041-1042
number of, 1036-1038
and Quadratic Formula,
1030-1031, 1033-1036
real, 1039
and x-intercepts, 984-986
real, 1039
and x-intercepts of graph, 880, 984-986

